is pleased to present the 2016 Water Quality Report (Consumer Confidence Report) to let the City water customers know where Hayward drinking water comes from, how it is treated, the results of water quality monitoring, and other important information about water quality.

The City of Hayward purchases all of its water from the San Francisco Public Utilities Commission (SFPUC). The results of water quality monitoring by the SFPUC and City of Hayward confirm that the water delivered to Hayward customers in 2016 met all state and federal standards. Important information about any contaminants that were detected in the drinking water in 2016 can be found in this report.

WHAT IS THE SOURCE OF OUR DRINKING WATER?
SFPUC is the sole supplier of water to Hayward. The Hetch Hetchy watershed, an area located in Yosemite National Park, provides the majority of water delivered by SFPUC to Hayward. Spring snow melt runs down the Tuolumne River and is stored in the Hetch Hetchy Reservoir.

SFPUC provides a small amount of water from the Alameda watershed, which is located in the East Bay and stored in the Calaveras and San Antonio Reservoirs. The two local reservoirs hold rain, local runoff, and some Hetch Hetchy water. This surface water source is supplemented by a small amount of ground water from Sunol Filter Galleries near the town of Sunol.

IS OUR WATER FILTERED AND TREATED?
The Hetch Hetchy reservoir water supply meets all federal and state requirements for watershed protection, disinfection treatment, bacteriological quality, and operational standards. As a result, the U.S. Environmental Protection Agency and the State Water Resources Control Board (SWRCB) have granted the Hetch Hetchy water supply an exemption from filtration requirements. SFPUC monitors the Hetch Hetchy watershed weather conditions, water turbidity levels, microbial contaminants, maintains aqueduct disinfection levels in the water, and complies with reporting requirements. This enables SFPUC to maintain a filtration exemption for the Hetch Hetchy source.

That portion of the water that is stored locally in the Calaveras and San Antonio reservoirs, including stored Hetch Hetchy water, is treated and filtered. SFPUC adds fluoride to all water delivered to all its wholesale customers including Hayward.
SFPUC aggressively protects the natural water resources entrusted to its care. Its annual Hetch Hetchy Watershed survey evaluates the sanitary conditions, water quality, potential contamination sources, and the results of watershed management activities by SFPUC and its partner agencies, including the National Park Service, to reduce or eliminate contamination sources. SFPUC also conducts sanitary surveys of the local Alameda and Peninsula watersheds every five years. These surveys identified wildlife and human activity as potential contamination sources. The reports are available for review at the SWRCBs San Francisco District office (510-620-3474).

WHO SHOULD SEEK ADVICE ABOUT DRINKING WATER?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons, such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, as well as some elderly and infants can be particularly at risk from infections. These individuals should seek advice about drinking water from their health care providers. USEPA/Center for Disease Control and Prevention (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the USEPA Safe Drinking Water Hotline (1-800-426-4791) or at www.epa.gov/safewater.

HOW DO DRINKING WATER SOURCES BECOME POLLUTED?

Sources of drinking water (both tap water and bottled water) typically include rivers, lakes, oceans, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals, and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in the source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, USEPA and the SWRCB prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. SWRCB regulations also establish limits for contaminants in bottled water that must provide the same protection for public health.

FOR MORE INFORMATION...

If you would like more information about Hetch Hetchy water or water quality monitoring, please contact the SFPUC Water Quality Bureau at 877-737-8297 or visit its website at www.sfwater.org. For information about the City of Hayward Water Distribution System, please call Alicia Sargiotto at 510-583-4727 or visit www.hayward-ca.gov.

Este aviso contiene información muy importante sobre su agua potable. Si no lo entiende, por favor hable con una persona que si lo entienda.

Ang ulat na ito ay nagalalaman ng mahahalagang impormasyon ukol sa iyong inuming tubig. Isalin-wika mo ito, o di kayaly makipag-usap sa isang nakakainindi nito.

Báo cáo này chứa thông tin tọc quan trọng về nước uống của quý vị. Xin phiên dịch ra, hay nói chuyện với người hiểu vấn đề này.

हिंदी विज्ञापन हिंदी उपग्रह भीतर के भग्नावशेष घटनाएँ हैं। हिंदी भाषावल वर्णी से हिंदी बोले है हिंदी विज्ञापन साभार वर्णी हिंदी सहन के।

इस रिपोर्ट में आपके पीने के पानी के बारे में महत्वपूर्ण जानकारी है। इसका अनुवाद करें, या जो कोई इसे समझते हो उनसे बात करें।

HAYWARD
The tables below and on the following page provide important information about contaminants that were detected in the water in 2016. You may be unfamiliar with the terms and abbreviations, so here are definitions to help you understand the water quality summary:

- **Maximum Contaminant Level Goal (MCLG):**
 The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

- **Public Health Goal (PHG):**
 The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

- **Maximum Contaminant Level (MCL):**
 The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible.

- **Maximum Residual Disinfectant Level Goal (MRDLG):**
 The level of a drinking water disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

- **Maximum Residual Disinfectant Level (MRDL):**
 The highest level of a disinfectant allowed in drinking water. There is no known or expected risk to health. MRDLs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

- **Primary Drinking Water Standards:**
 MCLs and MRDLs for contaminants that affect health, along with their monitoring and reporting requirements, and water treatment requirements.

- **Treatment Technique (TT):**
 A required process intended to reduce the level of a contaminant in drinking water.

- **Regulatory Action Level (AL):**
 The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

- **Secondary Maximum Contaminant Level (SMCL):**
 Standards set by the USEPA/California Department of Public Health to protect the odor, taste, and appearance of drinking water.

- **Unregulated Contaminants (UCMR):**
 A federal rule that requires monitoring for contaminants that don’t have drinking water standards set by the USEPA. The purpose of monitoring for these contaminants is to help the USEPA decide whether the contaminants need to be regulated.

Contaminants listed in the following tables were detected in 2016 drinking water samples. The tables contain the name of each substance, the highest level allowed by regulation (MCL), if applicable, the ideal goal for public health (PHG), if applicable, the amount detected, typical sources of the contamination, a key to the units of measurement, and notes to explain the findings. Laboratory staff analyzed the water samples for other contaminants. These contaminants, including MTBE, perchlorate, arsenic, herbicides and pesticides, were not detected.

PRIMARY DRINKING WATER STANDARDS

Mandatory Health-Related Standards

<table>
<thead>
<tr>
<th>Detected Contaminants</th>
<th>Unit</th>
<th>MCL</th>
<th>PHG</th>
<th>Range</th>
<th>Average (Maximum)</th>
<th>Typical Sources in Drinking Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>TURBIDITY (SFPUC Treated Water)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unfiltered Hetch Hetchy Water</td>
<td>NTU</td>
<td>TT = 5</td>
<td>N/A</td>
<td>0.3 – 0.5</td>
<td>(3.2)</td>
<td>Soil Runoff</td>
</tr>
<tr>
<td>Filtered Water – Sunol Valley WTP</td>
<td>NTU</td>
<td>TT = 1</td>
<td>N/A</td>
<td>-</td>
<td>(1)</td>
<td>Soil Runoff</td>
</tr>
<tr>
<td>%</td>
<td>95% <0.3</td>
<td>N/A</td>
<td>98% - 100%</td>
<td>-</td>
<td>Soil Runoff</td>
<td></td>
</tr>
<tr>
<td>DISINFECTION BY-PRODUCTS AND PRECURSORS (SFPUC Regional System)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Organic Carbon</td>
<td>ppm</td>
<td>TT = 1</td>
<td>N/A</td>
<td>1.6 - 5.3</td>
<td>2.4</td>
<td>Various natural and man-made sources</td>
</tr>
<tr>
<td>DISINFECTION BY-PRODUCTS AND PRECURSORS (City of Hayward Distribution System)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Trihalomethanes (TTHMs)</td>
<td>ppb</td>
<td>80</td>
<td>N/A</td>
<td>45.1 - 72.3</td>
<td>(57)</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Total Haloacetic Acids</td>
<td>ppb</td>
<td>60</td>
<td>N/A</td>
<td>16.0 - 55.9</td>
<td>(42)</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>MICROBIOLOGICAL (SFPUC Regional System)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Giardia lamblia</td>
<td>cysts/L</td>
<td>TT</td>
<td>(0)</td>
<td>0 - 0.11</td>
<td>0.03</td>
<td>Naturally present in the environment</td>
</tr>
<tr>
<td>MICROBIOLOGICAL (City of Hayward Distribution System)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Coliform</td>
<td>%</td>
<td>5</td>
<td>(0)</td>
<td>0.0 – 0.6</td>
<td>0.1</td>
<td>Naturally present in the environment</td>
</tr>
<tr>
<td>INORGANIC CHEMICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoride</td>
<td>ppm</td>
<td>2</td>
<td>1</td>
<td>ND - 0.8</td>
<td>0.3</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>DISINFECTANT RESIDUALS (City of Hayward Distribution System)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorine</td>
<td>ppm</td>
<td>MRDL=4</td>
<td>MRDLG=4</td>
<td>0.0 - 3.4</td>
<td>2.4</td>
<td>Drinking water disinfectant for treatment</td>
</tr>
<tr>
<td>LEAD AND COPPER RULE STUDY (City of Hayward Tap Water)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>ppb</td>
<td>1300</td>
<td>300</td>
<td>1.1 - 906</td>
<td>56,6</td>
<td>Corrosion of household plumbing systems</td>
</tr>
<tr>
<td>Lead</td>
<td>ppb</td>
<td>15</td>
<td>0.2</td>
<td><1.0 - 32.1</td>
<td>2.3</td>
<td>Corrosion of household plumbing systems</td>
</tr>
</tbody>
</table>
SAVING WATER... MAKE IT A HABIT

There are many simple steps that residents and businesses can take to save water.

WATER CONSERVATION STARTS WITH YOU

- Replace old toilets with new, water-saving models.
- Replace old fixtures with new, water-saving models.
- Turn off the faucet when you are brushing your teeth, shaving, and doing the dishes.
- Take shorter showers. Each minute you cut from your shower saves 2.5 gallons of water.
- Don’t wash your car at home. Use a commercial car wash that recycles water.
- Install faucet aerators in your kitchen and bathroom. Aerators reduce the volume of water coming from faucets, but because a little air is mixed into the water, you will feel like the flow is just as strong.
- Repair leaks. To check for toilet leaks, place a few drops of food coloring in the toilet tank. If color appears in the bowl, there is a leak and you probably need a new flapper.
- Give your landscaping only the water it needs. For example, most established lawns need water only once or twice a week. Water only at night or very early in the morning in order to reduce evaporation and use water more effectively. Placing mulch around your plants also reduces evaporation.
- Replace your lawn with water efficient and drought tolerant landscaping.
- Turn off the faucet when you are brushing your teeth, shaving, and doing the dishes.
- Don’t wash your car at home. Use a commercial car wash that recycles water.

SECONDARY MAXIMUM CONTAMINANT LEVELS
Consumer Acceptance Limits

Detected Contaminant	Unit	SMCL	Range	Average	Typical Sources in Drinking Water
Aluminum | ppb | 200 | ND - 55 | ND | Erosion of natural deposits
Chloride | ppm | 500 | <3 - 16 | 8.8 | Runoff/leaching from natural deposits
Color | unit | 15 | <5 - 11 | <5 | Naturally-occurring organic materials
Specific Conductance | µS/cm | 1600 | 31 - 218 | 146 | Substances that form ions when in water
Sulfate | ppm | 500 | 1 - 30 | 16 | Runoff/leaching from natural deposits
Total Dissolved Solids | ppm | 1000 | <20 - 95 | 63 | Runoff/leaching from natural deposits
Turbidity | NTU | 5 | ND - 0.5 | 0.2 | Soil runoff

UNREGULATED CONTAMINANTS

Detected Contaminant	Year Sampled	MCL	PHG (MCLG)	Range	Average	Typical Sources in Drinking Water
Chlorate | 2013-2016 | 800 (NL) | N/A | 63 - 130 | 81 | By-product of drinking water disinfection
Chromium-6 | 2013-2016 | 10 | 0.02 | <0.03 - 0.7 | 0.15 | Erosion of natural deposits; industrial discharges
Strontium | 2013-2016 | N/A | N/A | 13 - 53 | 27 | Erosion of natural and pipe deposits
Vanadium | 2013-2016 | 50 (NL) | N/A | 0.2 - 0.3 | 0.24 | Erosion of natural and pipe deposits

OTHER WATER QUALITY PARAMETERS

Parameter	Unit	ORL (12)	Range	Average
Alkalinity (as CaCO₃) | ppm | N/A | 7 - 112 | 39
Boron | 1000 (NL) | N/A | 7 - 123 | ND | ND
Bromide | ppb | N/A | 5 - 19 | 8
Calcium (as Ca) | ppm | N/A | 2 - 18 | 10
Chlorate | (13) | 800 (NL) | 47 - 250 | 143
Hardness (as CaCO₃) | ppm | N/A | 8 - 76 | 44
Magnesium | ppm | N/A | 0.2 - 6 | 3.6
pH | unit | N/A | 8.2 - 9.8 | 9.4
Phosphate (Ortho) | ppm | N/A | <0.03 - 0.11 | 0.04
Potassium | ppm | N/A | 0.2 - 1 | 0.6
Silica | ppm | N/A | 5.1 - 5.7 | 5.3
Sodium | ppm | N/A | 2.6 - 17 | 11
Strontium | ppm | N/A | 13 - 204 | 95

CRYPTOSPORIDIUM AND GIARDIA

Cryptosporidium and Giardia, parasitic microbes found in most surface water supplies, can pose a potential health threat. If swallowed, either may produce symptoms of diarrhea, stomach cramps, upset stomach, and slight fever. Some people, including those with compromised immune systems, are more vulnerable to Cryptosporidium and Giardia than others and should seek advice about drinking water from their health care providers. SFPUC tests regularly for Cryptosporidium and Giardia in both source and treated water supplies. In 2016, very low levels of Cryptosporidium and Giardia were occasionally detected in source and treated water.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants, including Cryptosporidium and Giardia. The presence of small amounts of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects may be obtained by calling the USEPA Safe Drinking Water Hotline at (800) 426-4791 or visiting www.epa.gov/safewater.

LEAD IN YOUR DRINKING WATER

In 2016, the City of Hayward tested for lead in the tap water of 59 residences. Lead sampling is required every three years and will be performed again in 2019.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The Hayward Water System is responsible for providing high quality drinking water, but cannot control the variety of materials used in your household or building plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking (use this water for other purposes – like watering plants). If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or at www.epa.gov/safewater/lead.