1) Design a fully simplified 3-bit mod 6 down counter with your choice of T, JK, or D flip-flops. The circuit decrements at each clock pulse, going through the sequence
0, 5, 4, 3, 2, 1, 0, 5, 4, 3, … .
Show the circuit diagram.

2) Consider the following page replacement algorithms: FIFO (first in first out) and LRU (least recently used). Logical memory has 10 pages (pages 0 .. 9), while physical memory consists of 4 frames (frames 0 .. 3). The page reference string begins with 2, 6, 5, 7 to fill the four frames. Each part begins from this same initial point.

On your solution page, show the 2 frame traces for each part.

a) Continue the page reference string with at most 3 additional terms where LRU will result in strictly fewer page faults than FIFO.

ref. str.: 2 6 5 7 _ _ _

2 2 2 2
 6 6 6
 5 5
 7

2 2 2 2
 6 6 6
 5 5
 7

L RU

b) Continue the page reference string with at most 3 additional terms where FIFO will result in strictly fewer page faults than LRU.

ref. str.: 2 6 5 7 _ _ _

2 2 2 2
 6 6 6
 5 5
 7

2 2 2 2
 6 6 6
 5 5
 7

L RU

ref. str.: 2 6 5 7 _ _ _

2 2 2 2
 6 6 6
 5 5
 7

2 2 2 2
 6 6 6
 5 5
 7

F I FO
3) Consider the Readers/Writers problem with a single writer. Any number of readers can examine a file and the writer is only allowed access when there are no active readers. Consider the following incorrect solution. The common variables and their initializations are given by:

```c
semaphore wrt=1;
int readcount=0;
```

Code for the writer and the readers:

```c
writer()
{
    wait(wrt);
    //Do the writing
    signal(wrt);
}

reader()
{
    if(readcount==0)wait(wrt);
    readcount++;
    //Do the Reading
    readcount--;
    if(readcount==0)signal(wrt);
}
```

Give an execution sequence where a reader and the writer have access at the same time.

1) Given a possibly empty binary tree containing character data, write a function that returns the number of left children in the tree. The prototype for your function should be

```c
int LeftCount(TreeNode *ptr)
```

Global variables may not be used. Declare all data structures.

2) Given a possibly empty singly linked list, write a function that reverses the last 4 nodes of the list (without altering the earlier nodes). If the given list has fewer than 5 nodes, the entire list should be reversed. The prototype for your function should be

```c
void Reverse4(Nodetype *ptr)
```

3) Solve the recurrence relation \(T(n) = 2T(n/2) + (n - 1) \) where \(T(1) = 0 \) and \(n = 2^k \) for a nonnegative integer \(k \). Your answer should be a precise function of \(n \) in closed form. An asymptotic answer is not acceptable. Justify your solution.
1. A certain programming language P defines a comment as delimited by /# and #/. Let the alphabet $\Sigma = \{a, b, /, #\}$ and let C be the set of all comments that begin with /#, end with #/, and contain no intervening #/. The shortest legal string in L is therefore /##/.

 a. (10 points) Give a deterministic finite automaton (DFA) that recognizes legal comments C in the language P.
 b. (10 points) Write a context-free grammar (CFG) that generates legal comments C in the language P.

2. Consider the language $L = \{<M> | M$ is a Turing machine that accepts the string $w = 0011\}$.

 a. (5 points) Is L decidable or undecidable?
 b. (15 points) Prove your answer above using reducibility. You may assume that the following languages are known to be undecidable:

 $\text{HALT}_{TM} = \{<M, w> : M$ is a Turing machine that halts on $w\}$
 $\text{ATM} = \{<M, w> : M$ is a Turing machine that accepts $w\}$

 You may not use Rice’s Theorem.

3. For each decision problem listed below, answer:
 i. Is the problem in the class NP?
 ii. Is the problem NP-complete?

 Scoring: each correct answer given is +2, each incorrect answers given is -1, no answer given is 0]

 DO NOT GUESS!

 a. Given a graph G, does G contains a 3-clique?

 (a 3-clique is a subgraph of G that is fully connected or complete on 3 vertices)

 b. Given two integers n and m, are n and m relatively prime?

 (two integers are relatively prime if their greatest common divisor is 1)
c. Given a graph G and a number k, is the largest clique in G of size k?

 (a clique is a subgraph of G that is a complete graph)

d. Given a Boolean expression E, are there exactly two truth assignments that satisfy E?

 (a Boolean expression is satisfiable if some assignment of variables makes it true)

e. Given a set of students $N = \{s_1, s_2, \ldots, s_{|N|}\}$, a set of final exams $M = \{e_1, e_2, \ldots, e_{|M|}\}$, a mapping $f: N \to P(M)$ showing the specific subset of exams each student is taking, and a number t of possible time slots for the exams, is it possible to schedule the exams into the t time slots such that no student has two of his or her exams assigned to the same time slot?