\qquad Net ID: \qquad

Question 1) (10 points each case)

A. Consider the following recurrence relation and solve it to come up with a precise function of n in closed form (that means you should resolve all sigmas, recursive calls of the function T, etc.). An asymptotic answer is NOT acceptable. Justify your solution and show all your work.
$\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n} / 2)+2 \mathrm{n}$ where $T(1)=1$ and $n=2^{k}$ for a non-negative integer k.
B. Count the precise number of "fundamental operations" executed in the following code. Again, your answer should be a function of $\mathrm{n}(\mathrm{n} \geq 0)$ in closed form. No asymptotic bound is accepted.

```
for(int i= 0; i < = n; i++)
{
```

Perform 1 fundamental operation;
for(int $\mathrm{j}=\mathrm{i}+1 ; \mathrm{j}<=\mathrm{n} ; \mathrm{j}++$)
Perform 1 fundamental operation;
//endfor j
\}//endfor i

Question 2) (5 points each case)

Which of the following five statements correctly describes the relationship between the functions f and g defined in A)-D) below? Note that more than one of the five statements may be correct for each part. You do NOT need to justify your choices.
$f \in o(g) \quad f \in O(g) \quad f \in \theta(g) \quad g \in o(f) \quad g \in O(f)$
A) $f(n)=n!, g(n)=(n+1)$!
B) $f(n)=2^{\mathrm{n}}, \quad g(n)=\mathrm{n}^{\mathrm{n}}$
C) $f(n)=10 \mathrm{n}+\log \left(\mathrm{n}^{3}\right)+4, \quad g(n)=\log \mathrm{n}+12$
D) $\mathrm{f}(\mathrm{n})=\left\{\begin{array}{lc}n^{3}-2 n, & n \leq 10 \\ 3 n^{2}+5, & n>10 \text { and } n \text { is odd } \\ 12 n^{2}, & n>10 \text { and } n \text { is even }\end{array}\right\}, \quad \mathrm{g}(\mathrm{n})=12 \mathrm{n}^{2}$

Question 3) (C/C++ coding question)

Write a recursive function which is provided an integer key value and a pointer to the root of a (possibly empty) binary tree, and searches for the key value in the tree. The tree should be implemented using linked lists and is to store n integer numbers.
A) (2 points) Declare your data structure.
B) (8 points) Code the search function as described above (no point for non-recursive function). Analyze the time complexity of your search function in the worst-case. Explain your answer and justify in detail.
C) (10 points) Now assume your given tree is a Binary Search Tree (BST). Write the search function again but this time consider the property of Binary Search Trees.

Analyze your new algorithm for worst-case time complexity and discuss whether your algorithm in part (C) is more efficient than the one in part (B) or not in the following cases:
(i) If the BST is balanced.
(ii) If the BST is unbalanced.

