Choose any 2 of the 3 problems. If you answer all three questions, only questions 1 and 2 will be graded.

Full name: \qquad Net ID: \qquad

Question 1) (20 points)

Consider the following recurrence relations. Express each in Big-O(). Show all your work. You can use the Master Theorem (if applicable) or any other technique. $\mathrm{T}(1)=1$ in all the cases. (5 points each)
A) $T(n)=T(n / 2)+3 n$
B) $T(n)=2 T(n / 2)+n \log n$
C) $\mathrm{T}(\mathrm{n})=9 \mathrm{~T}(\mathrm{n} / 3)+\mathrm{O}(1)$
D) $T(n)=T(n-1)+1$

Full name: \qquad
\qquad

Question 2) (20 points)

Part 1) (12 points) Take the following list of functions and arrange them in ascending order of growth rate. That is, if function $g(n)$ immediately follows function $f(n)$ in your arrangement, then it should be the case that $\mathrm{f}(\mathrm{n})$ is $\mathrm{O}(\mathrm{g}(\mathrm{n}))$. No justification is needed.

$$
\begin{aligned}
& \mathrm{fl}(\mathrm{n})=2^{\mathrm{n}} \\
& \mathrm{f} 2(\mathrm{n})=\mathrm{n}^{4} \\
& \mathrm{f} 3(\mathrm{n})=\mathrm{n} \\
& \mathrm{f} 4(\mathrm{n})=100^{\mathrm{n}} \\
& \mathrm{f} 5(\mathrm{n})=\mathrm{n} \log \mathrm{n}^{4} \\
& \mathrm{f} 6(\mathrm{n})=\log \mathrm{n} \\
& \mathrm{f} 7(\mathrm{n})=\mathrm{n}^{\mathrm{n}} \\
& \mathrm{f} 8(\mathrm{n})=\mathrm{n}!
\end{aligned}
$$

Part 2) (4 points each) Let two functions $f(n)$ and $g(n)$ reflect the total number of basic operations in two algorithms A_{1} and A_{2}, respectively.
A) Assume $\mathrm{f}(\mathrm{n})=$ little-o $(\mathrm{g}(\mathrm{n}))$. What will be the result of $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=$? Justify your answer in at most 5 sentences. Be precise.
B) Assume $\mathrm{f}(\mathrm{n})=\operatorname{Big}-\mathrm{O}(\mathrm{g}(\mathrm{n}))$. What will be the result of $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=$? No justification is needed here.

Full name: \qquad
\qquad

Question 3) (C/C++ coding question) (20 points)

Consider two binary trees T_{1} and T_{2}. Assume nodes in both trees are labeled with integer numbers. Definition: We say two nodes in trees T_{1} and T_{2} overlap if the node in T_{1} is in the same position (same level and being left or right) as the node in T_{2}.
For example, in the below figure, the node $v \in T_{1}$ overlaps with the node $v^{\prime} \in T_{2}$, and the node $u \in T_{1}$ overlaps with $u^{\prime} \in T_{2}$. However, the node $w \in T_{1}$ does not overlap with any node in T_{2}. Also, the node $x^{\prime} \in T_{2}$ does not overlap with any node in tree T_{1}.

T_{1}

Write a recursive Magic function that receives pointers to the roots of trees T_{1} and T_{2} and returns a pointer to the root of a newly constructed tree, called T_{3}, where the nodes in T_{3} are going to be constructed as follows:

1) If two nodes in trees T_{1} and T_{2} overlap, the product of their labels will make the label for the corresponding node in tree T_{3}.
2) Otherwise, the non-null node label will be used for labeling the node in tree T_{3}.

For example, let tree T_{1} and T_{2} be as follows:
T_{1}

Full name: \qquad
The new tree T_{3} will look like this:

Again, the input to the function is a pointer to the root of (possibly empty) tree T_{1} and a pointer to the root of (possibly empty) tree T_{2} and it returns a pointer to the root of tree T_{3}. All trees should be implemented using singly linked lists.
A) (4 points) Declare your data structure.
B) (10 points) Write a $\mathrm{C} / \mathrm{C}++$ code for the Magic function as described above (a nonrecursive function will receive 0 points. Code only in C or $\mathrm{C}++$).
C) (6 points) Analyze the time complexity of your Magic function in the worst case, assuming that tree T_{1} has n_{1} nodes and tree T_{2} has n_{2} nodes. Explain your answer.

