CS 692 Capstone Exam Theory Exam Fall 2023

Choose any 2 of the $\mathbf{3}$ problems. If all three are answered, only questions $\mathbf{1}$ and $\mathbf{2}$ will be graded.

1. Consider language $\mathrm{L}_{1}=\{\mathrm{w} \mid \mathrm{w}$ does not contain the substring " 00 " $\}$ over $\Sigma=\{0,1\}$:
(a). (5 pts) Write one difference between NFA and DFA in general and explain clearly.
(b). (10 pts) Draw a state diagram of an NFA for this language L_{1}.
(c). (5 pts) Draw a state diagram of a DFA for this language L_{1}.
2. Consider language $\mathrm{L}_{2}=\{\mathrm{w} \mid \mathrm{w}$ begins and ends with the same symbol $\}$ over $\Sigma=\{0,1\}$, for example, string 101 is in L_{2}, but string 100 is not in L_{2}.
(a). (5 pts) Write one difference between Turing machines and Pushdown Automata in general and explain clearly.
(b). (10 pts) Draw a Turing machine of any type to accept this language L_{2}. You can use the following notation to label the transitions:

(read symbol x , write symbol y , direction to move is L or R)
(c). (5 pts) Explain clearly how your Turing machine works to accept a valid string. You may use any string from L_{2} as an example.
3. Consider $\Sigma=\{0,1\}$:
(a). (5 pts) Give the Pumping Lemma for regular languages. State clearly and completely. (b). (15 pts) Prove whether or not the following language L_{3} is a regular language. If it is regular, give a regular expression for L_{3}. If not, apply the pumping lemma to prove it.

$$
\mathrm{L}_{3}=\left\{0^{\mathrm{m}} 1^{\mathrm{n}} \mid \mathrm{m}<\mathrm{n}\right\} .
$$

