There is a nonconstant function $f: \mathbb{R} \to \mathbb{R}$ such that

i. $f(0)=2$;

ii. f is continuously differentiable;

iii. for each positive X, if S_X is the solid obtained by revolving about the x-axis the region bounded by the x-axis, the graph of f, and the vertical lines $x=0$ and $x=X$, then the surface area of S_X (excluding the circular "ends") equals the volume of S_X.

Find f.