Problem for 1997 September and October

Let \mathbb{Q} be the set of rational numbers, so $\mathbb{Q} \subseteq \mathbb{R}$, where \mathbb{R} is the set of real numbers. Let \mathbb{R}^2 be topologized as usual, and consider $S=(\mathbb{Q} \times (\mathbb{R} - \mathbb{Q})) \cup ((\mathbb{R} - \mathbb{Q}) \times \mathbb{Q}) \subseteq \mathbb{R}^2$. Thus S is the set of points in the Cartesian plane with one coordinate rational and the other coordinate irrational.

Prove that S is not connected.

Solution by Professor Emeritus Victor Manjarrez

The line with equation $y=x$ is disjoint from S, and is a closed subset of \mathbb{R}^2; hence let $U=\{(x,y) \in \mathbb{R}^2 \mid x < y\}$ and $V=\{(x,y) \in \mathbb{R}^2 \mid y < x\}$. Then U is open in \mathbb{R}^2, V is open in \mathbb{R}^2, neither U nor V is empty, $U \cap V = \emptyset$, and $S \subseteq U \cup V$.

Therefore S is not connected.