Problem for 2002 June

Communicated by Dan Jurca

This is an old problem, but has not appeared here for a long time.

There are one million dots (points) in the plane; prove that there exists a (straight) line such that exactly half of the dots are on each side of the line.

Solution (from a book of problems by Charles Trigg)

We generalize to the case that there are $2n$ dots, where n is a positive integer. Let us call this set of points S. Consider the set of all

$$\binom{2n}{2} = n(2n-1)$$

(not necessarily distinct) lines determined by each pair of points chosen from S. These lines do not cover the entire plane—the plane is not the union of finitely many lines. Hence there exists a point, say P, which does not lie on any of the lines, and furthermore lies to the left of some disk the interior of which includes S. Now for each point Q in S the line determined by P and Q contains no point of S other than Q. Therefore as the point Q varies through S we may mark the n-th and the $(n+1)$-th lines; each line through P between these lines has n points of S on each side.

Also solved by Matthew Hubbard and John Sayer.