Problem for 2008 December

Proposed by Dan Jurca

Show that the n-th Catalan number

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

is odd if and only if n is 1 less than a power of 2.

Solution 1 by the proposer

We shall use the following notation. For each positive integer n and each prime number p we let $\nu_p(n)$ equal the number of occurrences of p in the factorization of n as a product of primes; i.e.,

$$n = 2^{\nu_2(n)} \times 3^{\nu_3(n)} \times 5^{\nu_5(n)} \times \ldots$$

It is obvious that for each prime p we have $\nu_p(mn) = \nu_p(m) + \nu_p(n)$; and we recall that for each positive integer n and each prime p

$$\nu_p(n!) = \left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \left\lfloor \frac{n}{p^3} \right\rfloor + \ldots$$

First we consider the case of positive and even n. By a straightforward induction we find that

$$\binom{2n}{n} = \frac{2^{n/2}}{(n/2)!} \times ((n+1) \times (n+3) \times (n+5) \times \ldots \times (2n-1))$$

so that

$$\nu_2\binom{2n}{n} = \frac{n}{2} - \nu_2((n/2)!)$$
Now we observe that the sum in the parentheses, being a finite sum, is strictly less than the infinite sum \(\frac{n}{4} + \frac{n}{8} + \frac{n}{16} + \ldots = \frac{n}{2} \); it follows that

\[
0 < \nu_2 \left(\binom{2n}{n} \right),
\]

and since \(n+1 \) is odd, it follows that if \(n \) is positive and even, then \(0 < \nu_2(C_n) \), so that \(C_n \) is even.

Next suppose \(n \) is positive and odd. By a similar induction we find

\[
\binom{2n}{n} = \frac{2^{(n+1)/2}}{(n+1)/(n-1)/2)!} \times ((n+2)(n+4)(n+6)\ldots(x(2n-1)) \quad \text{so that}
\]

\[
C_n = \frac{1}{n+1} \binom{2n}{n}
\]

\[
= \frac{2^{(n+1)/2}}{(n+1)/(n-1)/2)!} \times ((n+2)(n+4)(n+6)\ldots(x(2n-1))
\]

\[
2^{(n-1)/2}
\]

\[
= \frac{2^{(n-1)/2}}{(n+1)/2)/(n-1)/2)!} \times ((n+2)(n+4)(n+6)\ldots(x(2n-1)) \quad \text{whence}
\]

\[
v_2(C_n) = -(n-1)/2 - v_2(((n+1)/2))
\]

\[
= \frac{n-1}{2} - \left(\left\lfloor \frac{n+1}{4} \right\rfloor + \left\lfloor \frac{n+1}{8} \right\rfloor + \left\lfloor \frac{n+1}{16} \right\rfloor + \ldots \right).
\]

We have \(C_2^{0} = C_0 = 1 = C_1 = C_2^{1} \) so suppose that \(n = 2^i - 1 \) for some \(i, 2 \leq i \). Then the sum in the parentheses equals \(2^{i-2} + 2^{i-3} + \ldots + 1 = 2^{i-1} - 1 = (n-1)/2 \), so that \(v_2(C_n) = 0 \), and \(C_n \) is odd.
Otherwise, if \(n \) is odd but not of the form \(2^i - 1 \), then there exist (unique) positive integers \(p \) and \(q \) such that \(n = 2^p + q \) and \(0 < q < 2^p - 1 \). Hence the sum in the parentheses equals

\[
(2^{p-2} + \lfloor (q+1)/4 \rfloor) + (2^{p-3} + \lfloor (q+1)/8 \rfloor) + \ldots + (1 + \lfloor (q+1)/2^p \rfloor)
\]

\[
= 2^{p-1} - 1 + \lfloor (q+1)/4 \rfloor + \lfloor (q+1)/8 \rfloor + \ldots
\]

\[
< 2^{p-1} - 1 + (q+1)/2
\]

\[
= (2^p + q)/2 - 1/2
\]

\[
= n/2 - 1/2
\]

\[
= (n-1)/2
\]

so that \(0 < v_2(C_n) \), and \(C_n \) is even.

Solution 2 by the proposer

It is well-known that \(C_n \) is the number of binary trees with \(n \) nodes. Now for each binary tree \(T \) let \(T' \) be the binary tree obtained from \(T \) by interchanging the left and right subtrees at each node; restricting this to binary trees with \(n \) nodes we have a bijection \(\phi_n \) from the set of binary trees with \(n \) nodes to itself, and we observe that \(\phi_n \circ \phi_n \) is the identity. Further we observe that \(\phi_n(T) = T \) if and only if \(T \) is a full binary tree with \(n \) nodes, and this is possible if and only if \(n = 2^i - 1 \) for some natural number \(i \). It follows at once that the number of binary trees with \(n \) nodes, \(C_n \), is odd if and only if \(n \) is 1 less than a power of 2.

Also solved by Bojan Basic (Serbia) and John M. Sayer