Determine all integers \(n \) such that \(n \) equals the sum of two or more consecutive positive integers.

Solution by Dan Jurca

Proposition. The positive integer \(n \) equals the sum of two or more consecutive positive integers if and only if \(n \) does not equal a power of 2.

Proof.

First, if \(0 \leq k, \ 2 \leq m, \) and \(n = (k + 1) + (k + 2) + \cdots + (k + m) \), then \(n = mk + m(m + 1)/2 \), so that \(2n = 2mk + m(m + 1) = m(2k + m + 1) \). If \(m \) equals an even integer, then \(2k + m + 1 \) equals an odd integer; in any case there exists an odd integer greater than 1 which divides \(2n \), hence which divides \(n \); it follows that \(n \) does not equal a power of 2.

Next, suppose \(n \) does not equal a power of 2; then there exist a unique nonnegative integer \(a \) and a unique positive integer \(b \) such that \(n = 2^a(2b + 1) \). If \(2^n \leq b \), let \(k = b - 2^a \); then \(0 \leq k \) and

\[
(k + 1) + (k + 2) + \cdots + (k + 2^{a+1}) = 2^{a+1}k + (1 + 2 + \cdots + 2^{a+1})
\]

\[
= 2^{a+1}k + \frac{2^{a+1}(2^{a+1} + 1)}{2}
\]

\[
= 2^{a+1}k + 2^a(2^{a+1} + 1)
\]

\[
= 2^a(2k + 2^{a+1} + 1)
\]

\[
= 2^a(2b - 2^a + 2^{a+1} + 1)
\]

\[
= 2^a(2b + 1)
\]

\[
= n,
\]

so that \(n \) equals the sum of \(2^{a+1} \) consecutive positive integers. If \(b < 2^n \), let \(k = 2^n - b - 1 \); then \(0 \leq k \) and

\[
(k + 1) + (k + 2) + \cdots + [k + (2b + 1)] = (2b + 1)k + [1 + 2 + \cdots + (2b + 1)]
\]

\[
= (2b + 1)k + \frac{(2b + 1)(2b + 2)}{2}
\]

\[
= (2b + 1)k + (2b + 1)(b + 1)
\]

\[
= (2b + 1)[k + (b + 1)]
\]

\[
= (2b + 1)[(2^n - b - 1) + b + 1]
\]

\[
= (2b + 1) \cdot 2^n
\]

\[
= 2^n(2b + 1)
\]

\[
= n,
\]

so that \(n \) equals the sum of \(2b + 1 \) consecutive positive integers.

Also solved by Bojan Bašić (Serbia), Massoud Malek, Bill Nico, and John M. Sayer