Problem for 2010 May

Communicated by Dan Jurca

a. Find all continuous functions \(f : \mathbb{R} \to \mathbb{R} \) such that
\[x \in \mathbb{R} \implies f(f(x)) = x. \]
b. Find a function \(f : \mathbb{R} \to \mathbb{R} \) such that
i. \(x \in \mathbb{R} \implies f(f(x)) = x \); and
ii. \(x \in \mathbb{R} \implies f(x) \neq x. \)

Solution by Dan Jurca

a. Proposition. If \(f : \mathbb{R} \to \mathbb{R} \) is continuous and \(x \in \mathbb{R} \implies f(f(x)) = x \), then \(f = \text{id}_\mathbb{R} \).

Proof.

Since \(f \circ (f \circ f) = \text{id}_\mathbb{R} = (f \circ f) \circ f \), it follows that \(f \) is a homeomorphism (with inverse \(f \circ f \)); in particular, \(f \) is injective. Now suppose \(a \in \mathbb{R} \) and \(f(a) \neq a \); we derive a contradiction as follows.

Let \(b = f(a) \) and \(c = f(b) \). Since \(b = f(a) \neq a \), it follows that \(b \neq a \), and hence \(c \neq b \). Also \(c \neq a \), since otherwise \(f(c) = f(f(b)) = f(f(a)) = a \), so \(f(a) = a \), a contradiction. Thus \(a \neq b \), \(b \neq c \), and \(c \neq a \). We next consider the following two possibilities: \(f(a) < a \) or \(a < f(a) \). Recall that \(f(c) = f(f(b)) = f(f(a)) = a \).

If \(f(a) < a \), then \(b < a \). Then \(c < b < a \) or \(b < c < a \) or \(b < a < c \). In the first case we have \(f(b) < f(a) < f(c) \), so by the intermediate value theorem (and continuity of \(f \)) there exists \(\xi \in (c,b) \) such that \(f(\xi) = f(a) \). But then \(\xi \neq c \), contradicting injectivity of \(f \). In the second case we have \(f(a) < f(b) < f(c) \), so again there exists \(\xi \in (c,a) \) such that \(f(\xi) = f(b) \), another contradiction. In the third case we have \(f(a) < f(c) < f(b) \), so once again there exists \(\xi \in (b,a) \) such that \(f(\xi) = f(c) \), yet another contradiction. Therefore \(a \leq f(a) \).

The argument in case \(a < f(a) \) is similar. Since there does not exist \(a \in \mathbb{R} \) such that \(f(a) \neq a \), it follows that \(x \in \mathbb{R} \implies f(x) = x \), so \(f = \text{id}_\mathbb{R} \).

b. Recall the notation: \(\{ \} : \mathbb{R} \to \mathbb{R} \) by \(x \mapsto \{x\} = x - \lfloor x \rfloor \); i.e., \(\{x\} \) is the fractional part of \(x \). Then consider \(f : \mathbb{R} \to \mathbb{R} \) by \(x \in \mathbb{R} \implies f(x) = \lfloor x \rfloor + \{x \} + 1/3 \). Suppose \(x \in \mathbb{R} \), and say \(x = n + \theta \), where \(n \) is an integer and \(0 \leq \theta < 1 \), so \(\lfloor x \rfloor = n \) and \(\{x\} = \theta \). (\(n \) and \(\theta \) are clearly uniquely determined.) Then \(f(x) = n + \{\theta + 1/3\} \), \(f(f(x)) = n + \{\theta + 2/3\} \), and \(f(f(f(x))) = n + \{\theta + 1\} = n + \theta = x \), so \(f(f(f(x))) = x \). Since \(\forall \theta : \{\theta + 1/3\} \neq \{\theta\} \), there exists no fixed point of \(f \).