Problem for 2011 August, September, and October

Proposed by Dan Jurca

For each integer \(n \), \(3 \leq n \), let

- \(p_n \) = the perimeter of the regular \(n \)-gon inscribed in the unit circle,
- \(q_n \) = the perimeter of the regular \(n \)-gon circumscribed about the unit circle,
- \(A_n \) = the area of the regular \(n \)-gon inscribed in the unit circle, and
- \(B_n \) = the area of the regular \(n \)-gon circumscribed about the unit circle.

Show: if \(3 \leq n \), then \(p_n \) more nearly approximates the perimeter of the circle than does \(q_n \); but if \(4 \leq n \), then \(B_n \) more nearly approximates the area of the circle than does \(A_n \). That is, prove

\[
3 \leq n \Rightarrow |2\pi - p_n| < |2\pi - q_n| \quad \text{and} \quad 4 \leq n \Rightarrow |\pi - B_n| < |\pi - A_n|.
\]

Solution by the proposer

We find easily that

\[
3 \leq n \Rightarrow p_n = 2n \sin \frac{\pi}{n}, \quad q_n = 2n \tan \frac{\pi}{n}, \quad A_n = n \sin \frac{\pi}{n} \cos \frac{\pi}{n}, \quad B_n = n \tan \frac{\pi}{n},
\]
and that \(3 \leq n \Rightarrow p_n < 2\pi < q_n \) and \(A_n < \pi < B_n \).

If \(f(\theta) = \sin \theta + \tan \theta - 2\theta \), then \(f(0) = 0 \), \(f'(\theta) = \cos \theta + \sec^2 \theta - 2 \), and \(f''(\theta) = -\sin \theta + 2 \sec^2 \theta \tan \theta = \sin(2\sec^2 \theta - 1) \). With \(\varphi(t) = 2\sec^3 t - 1 \) we have \(\varphi'(t) = 6\sec^2 t \tan t \), so \(0 < t < \pi/2 \Rightarrow 0 < \varphi'(t) \).

Hence \(0 < \theta < \pi/2 \Rightarrow 0 < f''(\theta) \), so \(f' \) increases in \([0, \pi/2]\). Therefore \(0 < \theta < \pi/3 \Rightarrow 0 < f(\theta) \), so that \(3 \leq n \Rightarrow 0 < \pi/n \leq \pi/3 \) and there follows that \(0 < n \sin(n/\pi) + n \tan(n/\pi) - 2\pi/n \) so that \(0 < n \sin(n/\pi) + n \tan(n/\pi) - 2\pi/n \), and thus \(3 \leq n \Rightarrow 2\pi - 2n \sin(n/\pi) < 2n \tan(\pi/n) - 2\pi, \) so \(2\pi - p_n < q_n - 2\pi \).

If \(g : (-\pi/2, \pi/2) \to \mathbb{R} \) by \(g(\theta) = 2\theta - \sin \theta \cos \theta - \tan \theta \), then \(g'(\theta) = 2 - \cos^2 \theta + \sin^2 \theta - \sec^2 \theta = 3 - 2\cos^2 \theta - \sec^2 \theta \). We observe that \(g'(0) = 0 \). Next, \(g''(\theta) = 4 \cos \theta \sin \theta - 2 \sec^2 \theta \tan \theta = 4 \sin \theta \cos \theta - 2 \sin \theta / \cos^3 \theta = 2 \sin \theta / (2 \cos \theta - \cos^3 \theta) \). If \(\psi : (-\pi/2, \pi/2) \to \mathbb{R} \) by \(\psi(\theta) = 2 \cos \theta - \cos^3 \theta \), then \(\psi'(\theta) = -2 \sin \theta + 3 \cos^2 \theta - \sin \theta = -(2 \sin \theta + 3 \sin \theta \cos^2 \theta) \). It follows that \(0 < \theta < \pi/2 \Rightarrow \psi'(\theta) < 0 \), so that \(\psi \) decreases in \([0, \pi/2]\). Now \(\psi(0) = 1 \), and \(\psi(\pi/6) = 2 - 2\sqrt{3}/2 - 1/(\sqrt{3}/2)^3 = \sqrt{3} - 8/(3\sqrt{3}) = 9\sqrt{3}/9 - 8\sqrt{3}/9 = \sqrt{3}/3 > 0 \). Therefore \(0 \leq \theta \leq \pi/6 \Rightarrow 0 < \psi(\theta) \). Since \(g''(\theta) = 0 \) it follows that \(0 < \theta < \pi/6 \Rightarrow 0 < g''(\theta) \), so \(g' \) increases in \([0, \pi/6]\). Since \(g'(0) = 0 \), it follows that \(g \) increases in \([0, \pi/6]\). Hence \(0 \leq \theta \leq \pi/6 \Rightarrow 0 < g(\theta) \). Thus \(6 \leq n \Rightarrow 0 < 2 \cdot \pi/n - \sin \pi/n \cdot \cos \pi/n - \tan \pi/n \), so that \(\tan \pi/n - \pi/n < \pi/n - \sin \pi/n \cdot \cos \pi/n \), whence \(n \tan \pi/n - \pi < \pi - \pi/n \cdot \sin \pi/n \cdot \cos \pi/n \) from which \(6 \leq n \Rightarrow B_n - \pi < \pi - A_n \). By straightforward computation \(B_4 - \pi < \pi - A_4 \) and \(B_5 - \pi < \pi - A_5 \).

Therefore, and finally, \(4 \leq n \Rightarrow B_n - \pi < \pi - A_n \).