Problem for 2012 January

Communicated by Dan Jurca

Suppose A, B, and C are three distinct points on an arbitrary parabola P. Prove that the area of the triangle ΔABC is twice the area of the triangle bounded by the lines tangent to P at A, B, and C.

Solution by Dan Jurca

Without loss of generality we may suppose the parabola is the curve in the x-y plane defined by the equation $x^2 = 4py$, or $y = x^2/4p$. (This curve then consists of all points in the x-y plane equidistant from the focus at $(0, p)$ and the line—the directrix—with equation $y = -p$.) Then suppose the three points are at $A: (a, a^2/4p)$, $B: (b, b^2/4p)$, and at $C: (c, c^2/4p)$. It follows that the area of the triangle with vertices at A, B, and C is the absolute value of the following determinant.

\[
\begin{vmatrix}
 a & b & c \\
 a^2/4p & b^2/4p & c^2/4p \\
 1 & 1 & 1
\end{vmatrix}
\]

Equations of the lines tangent to the parabola at A and B are $y - a^2/4p = (a/2p)(x - a)$ and $y - b^2/4p = (b/2p)(x - b)$, respectively; and these line intersect at the following point.

\[
\left(\frac{a + b}{2}, \frac{ab}{4p} \right)
\]

The points of intersection of the other two pairs of tangent lines are similar; hence the area of the triangle bounded by the three tangent lines is the absolute value of the following determinant.

\[
\begin{vmatrix}
 a + b & b + c & c + a \\
 \frac{2}{2} & \frac{2}{2} & \frac{2}{2} \\
 ab & bc & ca \\
 \frac{4p}{4p} & \frac{4p}{4p} & \frac{4p}{4p} \\
 1 & 1 & 1
\end{vmatrix}
\]

By straightforward computation this determinant equals $-1/2$ times the determinant above.

Also solved by Lewis Felver and Kourosh Ghaderi