Problem for 2012 August

Proposed by Dan Jurca

Prove that for each positive integer k there exist positive integers a and b such that

$$a^2 + b^2 = (b + k)^2.$$

Solution by the proposer

For each positive integer k if $a = 3k$ and $b = 4k$, then a and b are positive integers, and

$$a^2 + b^2 = (3k)^2 + (4k)^2$$
$$= 9k^2 + 16k^2$$
$$= 25k^2$$
$$= (5k)^2$$
$$= (4k + k)^2$$
$$= (b + k)^2.$$

Also solved by Massoud Malek