Problem for 2015 May

Proposed by Dan Jurca

This problem was proposed previously, in 2006 September.

The following program written in C/C++ can be used to (recursively) compute the Fibonacci numbers F_n, where $F_0 = 0$, $F_1 = 1$, and $2 \le n \Rightarrow F_n = F_{n-2} + F_{n-1}$.

```c
unsigned int fib( unsigned int n )
{
    return( n < 2 ? n : fib( n-2 ) + fib( n-1 ) );
}
```

Let C_n be the number of times this function is entered when it is used to compute F_n. For example, $C_0 = C_1 = 1$ and $C_2 = 3$. Determine C_n as a function of n.

Solution by the proposer

Proposition. $0 \le n \Rightarrow C_n = 2F_{n+1} - 1$.

Proof.

We have

\[C_0 = 1 = 2 \cdot 1 - 1 = 2F_1 - 1 = 2F_{0+1} - 1 \quad \text{and} \]
\[C_1 = 1 = 2 \cdot 1 - 1 = 2F_2 - 1 = 2F_{1+1} - 1, \]

so the proposition certainly holds if $n = 0$ or $n = 1$. Suppose now that $2 \le n$, $C_{n-2} = 2F_{n-1} - 1$, and $C_{n-1} = 2F_n - 1$. Then since, obviously,

\[C_n = 1 + C_{n-2} + C_{n-1}, \quad \text{we have} \]
\[C_n = 1 + (2F_{n-1} - 1) + (2F_n - 1) \]
\[= 2(F_{n-1} + F_n) - 1 \]
\[= 2F_{n+1} - 1, \]

so the proposition follows by induction on n.

Also solved by Winston Teitler