Problem for 2016 October

Proposed by Matthew Hubbard

Suppose \(T \) is a triangle such that

- \(T \) is nondegenerate; \(i.e. \), the area of \(T \) is strictly positive; and
- the length of each side of \(T \) is an integer; and
- the perimeter of \(T \) is odd.

Prove that the area of \(T \) is irrational.

\[\text{Solution by Dan Jurca} \]

Lemma. If \(n \) is an integer, then \(n^2 \) is congruent to 0, 1, or 4 (mod 8).

Proof.

If \(n \) is an integer, then (by the division theorem) there exist (unique) integers \(q \) and \(r \) such that \(n = 4q + r \) and \(0 \leq r < 4 \). Hence \(n^2 = (4q + r)^2 = 16q^2 + 8qr + r^2 = 8(2q^2 + qr) + r^2 \), and since \(0 \leq r < 4 \), it follows that \(r^2 \) is 0, 1, or 4, and the lemma follows.

Now suppose the lengths of the sides of \(T \) are \(a, b, \) and \(c \), each a positive integer. Since \(a + b + c \) is odd, it follows that either only one side is of odd length, or all three sides are of odd length.

So consider first for nonnegative integer \(x \) and positive integers \(y \) and \(z \), that \(a = 2x + 1 \), \(b = 2y \), and \(c = 2z \). Using Heron’s formula for the area \(A \) of \(T \), \(A = \sqrt{s(s-a)(s-b)(s-c)} \) where \(s = (a+b+c)/2 \), we compute as follows.

\[
\begin{align*}
 s &= (1 + 2x + 2y + 2z)/2; \\
 A &= \sqrt{s(s-a)(s-b)(s-c)} \\
 &= \sqrt{(1+2x+2y+2z)(-1-2x+2y+2z)(1+2x-2y+2z)(1+2x+2y-2z)/4}
\end{align*}
\]

It is well known and easy to prove that the square root of an integer \(N \) is rational if and only if \(N \) is a perfect square. Therefore \(A \) is rational if and only if the quantity, say \(Q_1 \), in the radical sign above is a perfect square. However, we find by a tedious computation (or using Mathematica) that

\[
(1 + 2x + 2y + 2z)(-1 - 2x + 2y + 2z)(1 + 2x - 2y + 2z)(1 + 2x + 2y - 2z)
= -1 - 8x - 24x^2 - 32x^3 - 16x^4 + 8y^2 + 32xy^2 + 32x^2y^2 - 16y^4 + 8z^2 + 32xz^2 + 32x^2z^2 + 32y^2z^2 - 16z^4
= 7 + 8(-1 - x - 3x^2 - 4x^3 - 2x^4 + y^2 + 4xy^2 + 4x^2y^2 - 2y^4 + z^2 + 4x^2z^2 + 4x^2y^2 - 2z^4),
\]

which is not congruent (mod 8) to 0, 1, or 4. Therefore \(Q_1 \) is not a perfect square, and \(A \) is irrational.

Next, suppose for nonnegative integers \(x, y, \) and \(z, \) that \(a = 2x + 1, b = 2y + 1, \) and \(c = 2z + 1 \). Using Heron’s formula, we compute as follows.

\[
\begin{align*}
 s &= (3 + 2x + 2y + 2z)/2; \\
 A &= \sqrt{s(s-a)(s-b)(s-c)} \\
 &= \sqrt{(3+2x+2y+2z)(1 - 2x + 2y + 2z)(1 + 2x - 2y + 2z)(1 + 2x + 2y - 2z)/4} \\
 &= \sqrt{Q_2}/4
\end{align*}
\]

Again, \(Q_2 \), the product of four integers, is an integer, and is \(A \) rational if and only if \(Q_2 \) is a perfect square. However, again tediously (or using Mathematica), we find

\[
Q_2 = (3 + 2x + 2y + 2z)(1 - 2x + 2y + 2z)(1 + 2x - 2y + 2z)(1 + 2x + 2y - 2z)
= 3 + 8x - 8x^2 - 32x^3 - 16x^4 + 8y + 32xy + 32x^2y - 8y^2 + 32xy^2 + 32x^2y^2 - 32y^3 - 16y^4 + 8z^2 + 32xz^2 + 32x^2z^2 + 32yz^2 + 32y^2z^2 - 32z^3 - 16z^4
= 3 + 8(x - x^2 - 4x^3 - 2x^4 + 4xy + 4x^2y - y^2 + 4xy^2 + 4x^2y^2 - 2y^4 + z^2 + 4x^2z^2 + 4x^2y^2 + 4yz^2 + 4y^2z^2 - 4z^3 - 2x^4),
\]

which is not congruent (mod 8) to 0, 1, or 4. Therefore \(Q_2 \) is not a perfect square, and \(A \) is irrational.