Problem for 2017 February

Proposed by Dan Jurca

a. Suppose p is a prime number, n is a positive integer, x is a positive integer, and

$$x \equiv a \pmod{p^n}$$

where $0 < a < p^n$. Show that there exists a positive integer y such that

$$xy \equiv a \pmod{p^{n+1}} \; \text{and} \; \gcd(p, y) = 1.$$

b. Suppose a and b are integers, $2 \leq a$, $2 \leq b$, and $\gcd(a, b) = 1$. Show that there exists a positive integer x such that

$$x \equiv a \pmod{ab},$$

but there does not exist an integer y such that

$$xy \equiv a \pmod{a^2b}.$$