Five Year Assessment Plan template

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PLO 1</td>
<td>Use rubric to assess: 1) Outcome 2 in CS 321 – Computer Architecture. We will use exam problems to assess this outcome. 2) Outcome 2 in ENGR 230 – Electric Circuits. We will use exam problems to assess this outcome. 3) Outcome 3 in CMPE 480 – VLSI Circuit Design/Layout. We will use exam problems to assess this outcome.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLO 2</td>
<td></td>
<td>Use rubric to assess: 1) Outcome 6 of CS 321 – Computer Architecture. We will use the final project to assess this outcome.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| PLO 3 | Use rubric to assess:
1) Outcome 4 of CS 221 – Comp. Org. & Assembly Lang. Programming. We will use exam problems to assess this outcome.
2) Outcome 6 of CS 321 – Computer Architecture. We will use the final project to assess this outcome.
3) Outcome 3 in CMPE 480 – VLSI Circuit Design/Layout. We will use exam problems to assess this outcome. |
|-------|---|
| PLO 4 | Use rubric to assess:
1) Outcome 3 in ENGR 100 – Intro. to |
| Engineering Design. We will use final project to assess this outcome. |
| 2) Outcome 1 in CMPE 421 – Computer Architecture II. We will use final project to assess this outcome. |
| 3) Outcome 1 of CMPE 499 – Senior Design II. We will use final project to assess this outcome. |

| PLO 5 | Use rubric to assess: |
| 1) Outcome 4 in CS 221 – Comp. Org. & Assembly Lang. Programming. We will use exam problems to assess this outcome. |
| 2) Outcome 3 in CS 321 – Computer Architecture. We will use exam problems to assess this outcome. |
| **ILO 1 assess** |
| 3) Outcome 1 of CMPE 499 – |
| PLO 6 | Use rubric to assess:
1) Outcome 2 in ENGR 100 – Intro. to Engineering Design. We will use an ethics assignment to assess this outcome.
2) Outcome 2 of ENGR 230 – Electric Circuits I. We will use exam problems to assess this outcome.
3) Outcome 4 of CMPE 499 – Senior Design II. We will use the final project to assess this outcome. | | | Senior Design II. We will use the final project to assess this outcome. |
|---|---|---|---|---|
| PLO 7 | Use rubric to assess:
1) Outcome 3 of ENGR 100 – Intro. to Engineering Design. We will use the final project oral presentation to assess this outcome.
2) Outcome 2 in CMPE 344 – | | | |
Microprocessor Org., operation, and programming. We will use the final project presentations to assess this outcome.

ILO 2 assess

3) Outcome 2 of CMPE 499 – Senior Design II. We will use final project presentation/report to assess this outcome.

| PLO 8 | Use rubric to assess:
| 1) Outcome 2 of ENGR 100 – Intro. to Engineering Design. We will use the final project to assess this outcome.
| 2) Outcome 5 of CMPE 344 – Microprocessor org., operation, and programming. We will use the final project to assess this outcome.
| 3) Outcome 4 of CMPE 499 – Senior Design II. We will use the final project to assess this outcome. |
| PLO 9 | Use rubric to assess:
1) Outcome 2 of ENGR 100 – Intro. to Engineering Design. We will use the final project to assess this outcome.
2) Outcome 5 of CMPE 344 – Microprocessor org., operation, and programming. We will use the final project to assess this outcome.
3) Outcome 1 of CMPE 499 – Senior Design II. We will use the final project to assess this outcome. |
|-------|---|
| PLO 10 | Use rubric to assess:
1) Outcome 2 in ENGR 100 – Intro. to Engineering Design. We will use ethics assignment to assess this outcome.
2) Outcome 4 in CMPE 499 – Senior Design II. We will use the final project to |
Closing the Loop: Programs will provide a narrative discussion of annual assessment results, analysis of those results, and any changes made as a result. This includes curriculum changes, pedagogy changes, changes in PLO’s, course SLO’s, etc. These results will be reported to CAPR.

ILOs assessed according to the above table (see PLO 5 and PLO 7):

ILO 1: Thinking and Reasoning: think critically and creatively and apply analytical and quantitative reasoning to address complex challenges and everyday problems.

ILO 2: Communication: communicate ideas, perspectives, and values clearly and persuasively while listening openly to others.

Explanation of PLOs:

PLO 1: Ability to apply knowledge of mathematics, science, and engineering.
PLO 2: Ability to design and conduct experiments, as well as to analyze and interpret data.

PLO 3: Ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.

PLO 4: Ability to function on multidisciplinary teams.

PLO 5: Ability to identify, formulate, and solve engineering problems.

PLO 6: Understanding of professional and ethical responsibility.

PLO 7: Ability to communicate effectively.

PLO 8: Broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.

PLO 9: Recognition of the need for, and an ability to engage in, life-long learning.

PLO 10: Knowledge of contemporary issues.

PLO 11: Ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.