California State University, East Bay
General Education Program
Five Year Review
April 2007

Sally K. Murphy, Director, General Education and First Year Programs
Julia Norton, Interim AVP, Institutional Research and Assessment
Barbara Warsavage, Associate, Institutional Research and Assessment
California State University, East Bay
General Education Program
Five Year Review
April 2007

Sally K. Murphy, Director, General Education and First Year Programs
Julia Norton, Interim AVP, Institutional Research and Assessment
Barbara Warsavage, Associate, Institutional Research and Assessment
Table of Contents

Topic	**Page(s)**
Introduction to CAPR about GE Five-Year Review | i to ii

I. General Education Self Study

1. Summary of last review and discussion of progress | 1 to 7
2. Applications for tenure-track positions (not applicable)

1.3. Outcomes Assessment

3. Introduction and Program Outcomes | 8
4. Basic Skills Assessment Data
 a. A1 Oral Communication | 9
 b. A2 Written Communication | 9 to 13
 c. A3 Critical Thinking | 13 to 15
 d. B4 Quantitative Reasoning | 15 to 22
 e. G4 Information Literacy | 22 to 24

5. Discipline Areas
 a. Overview | 26
 a. Natural Sciences | 26 to 29
 b. Humanities | 30 to 31
 c. Social Sciences | 31 to 34

6. Program Outcomes Assessment Data
 a. Building Community | 35 to 37
 b. Diversity | 38 to 41
 c. Retention | 42 to 44

7. Program Statistics (not applicable)

8. Comparative Review | 45 to 46
9. Other Program Achievements | 46 to 47
10. Extra Units Justification (not applicable)
2. **Five-Year Plan**
 2.1 Curriculum...47
 2.2 Students (not applicable)
 2.3 Faculty...48
 2.4 Other Resources (not applicable)

3. **Outside Reviewer’s Report**..available shortly

4. **GE (preliminary) Response to Outside Reviewer’s Report**...available just after shortly
Introduction to the Committee on Academic Program Review

about the

General Education Five-Year Review

Why ask the Committee on Academic Program Review to review General Education?

Any university’s general education program is the product of faculty decisions about what course of study they believe best for their undergraduate students to under gird and complement each student’s major. Indeed, the history of general education draws attention to the early and continuing requirement that public higher education take seriously the public good for which the public supports university studies: preparation of graduates to be active, contributing citizens of their local, state, national, and, increasingly, international communities. This public good is manifest in at least two forms: preparation for career contributions and for the contributions of citizenship. It is the responsibility of the university faculty to design programs of study and approve courses that meet both aspects of what makes for “contributing citizens”.

As such, the University reviews its general education requirements with an eye to what particular GE topics and structures would best prepare our students for the communities and world in which they will live and work. This curricular review, conducted every five years by the Committee on Instruction and Curriculum, is central to maintaining the currency and the fit of the University’s core requirements to the University’s mission. Of course, CIC also assures that the campus’ requirements are consistent with system mandates.

Two years ago, as Director of General Education and after consultation with the Chair of the Academic Senate, I asked the Committee on Academic Program Review to include GE in the five-year review cycle, because of CAPR’s new focus on assessment of student learning outcomes. The attention on and expertise in assessment of student learning that faculty who serve on CAPR are developing is as relevant to GE, which constitutes 40% of an undergraduate’s baccalaureate degree, as it is to the student’s major, which constitutes between 26% and 60% of the degree.

In the past ten to fifteen years, public education has felt increasing pressure from state and federal governments to demonstrate that students are acquiring the learning the
teachers intend when they design a program of study. This focus on assessment is, at its best, intended to provide a kind of quality assurance for the public that their monies are being used wisely and achieving the purposes for which they are spent. At the same time that interest in accountability was increasing, CSUEB’s general education requirements underwent a major revision in spring 1996. While preparing for the first freshman learning communities to start in fall 1998, the Director of General Education and the then Director of the Office of Assessment and Testing designed a rudimentary assessment program. It was clear that data would be required to determine whether our experimentation with learning communities was successful in achieving its goals. The assessments available at the time (there was not sufficient time to develop our own measures) and appropriate to measure the program outcomes articulated in those early days, were primarily self-report measures.

Since 1998, the faculty have approved learning outcomes for almost all topics covered by our general education requirements. This allows more direct measures of student learning. (The topics without articulated learning outcomes are few and where needed, should be approved by academic year 2007-08.) We continue to collect the self-report data about student expectations of and experiences in general education classes, now focusing on the freshman year. We currently have direct measures of student learning for composition and a portion of quantitative reasoning (the statistics course). Last year, (2005-06) faculty pilot-tested strategies for direct measures of student learning in a number of areas: lower division sciences, humanities, social sciences, and for our requirement that all students study the contributions to American history and culture by women and select cultural groups. Policies on GE assessment are currently before the Committee on Instruction and Curriculum. We intend to test direct measures of freshman year learning, oral communication, and critical thinking in the coming (2007-08) academic year.

CAPR’s thorough review of the student learning outcomes, the measures we have in place and are developing, and, most importantly, the data we have collected will greatly assist the Committee on Instruction and Curriculum during next year’s curricular review. CAPR’s recommendations will provide additional faculty input on the current program, its strengths and weaknesses and its directions for the future.
GE CAPR Five-Year Review
April 2007

General Education (recent) Program History

Creating the Learning Community Program

At California State University, East Bay (formerly Hayward) the General Education program is subject to review on a five-year program review cycle. In Academic Year 1996-97 the Committee on Instruction and Curriculum appointed a special GE Subcommittee1 with the charge of reviewing and reforming CSUEB’s general education. The charge was a response to continuing faculty complaints that students were not adequately prepared for work in the majors and to the recent WASC accreditation team’s report that CSUEB’s General Education program lacked “clarity, relevance, and meaning” resulting in “little sense of a unified and integrated academic experience for undergraduates” at East Bay, and with little coherence with or connection to majors. The WASC review team found “little evidence of University-wide planning for the reinforcement and full development of basic competencies in oral communication, critical thinking, and quantitative/analytic skills.

The GE Subcommittee was charged with creating multiple models for a GE program that would combine teaching and assessing of fundamental skills, use structures and teaching methods known to improve student learning, and provide coherence and community for our students—all goals identified by groups of faculty, staff and students in the prior year.

After much deliberation, the GE Subcommittee created three models and, after review by CIC, distributed them widely across campus to all academic departments and appropriate departments in student affairs, and discussed the models in an open forum held at a special meeting of the Academic Senate on February 11, 1997. The models ranged from thematically integrated courses that would combine the study of science, social science and humanities in a single learning community experience to a modified smorgasbord of courses from which students made individual selections. At the Academic Senate forum, considerable dissatisfaction was voiced over the models characterizing them as being either too revolutionary and lacking defined content or not revolutionary enough to satisfy the critiques of the current GE and lacking defined content (determining what should constitute general education in Science, Humanities, and Social Science was purposely unspecified by the subcommittee2). During the remainder of the Winter Quarter, the subcommittee held a number of open hearings soliciting both oral and written comments from all concerned members of the University community, and requested suggestions and criticisms about the models from members of each constituency.3

Using the data collected in the hearings and incorporating the information gathered in university-wide meetings the prior academic year, the subcommittee identified learning outcomes & learning environments that would support a high quality General Education program at CSUEB and presented them to CIC on March 17, 1997 (see appendix A). CIC, after making revisions to

1 The members were: Sally Murphy (Chair), Leigh Mintz (CAP), Znovy Radovilsky (SBE), Hadi Behzad (SBE), Don Sawyer (SEAS), Melany Speilman (SEAS), Kris Ramsdell (Library), Linda Kinrade (SOS), Kevin Callahan (SOS), Bill Langan (ALSS), Emily Stoper (ALSS), and Jackie Charonis (UAC).

2 The subcommittee members believed that the content, as specified by learning outcomes that captured the system requirements for each GE area, was best described by committees comprised of faculty with expertise in the content areas.

3 Hearings were held with students, faculty, department chairs, deans and the provost, and university general education advisors.
improve the clarity and organization of the document, unanimously recommended forwarding the
document to the Academic Senate for information and discussion (1996-97 CIC 21). The
Subcommittee continued to refine their models of General Education based on the feedback from
the Senate meeting and subsequent open hearings. On April 21, 1997, the subcommittee submitted
its proposal for a new General Education program to CIC.

The vote in favor of the proposal was 8-0. Prior to the vote, the committee removed some
suggestions handling transfer students whose GE was incomplete. CIC recommended further
study of that issue. The new lower division General Education program, most dramatically
restructuring general education for first-time freshmen, and the new Upper Division GE applied to
all students under the 1998-2000 and subsequent catalogs. This new program, to begin in fall,
1998, was approved by the Academic Senate on June 2, 1997 and by the President on June 17,
1997.

Key Features of the 1998-2006 GE program

The 1998-2002 GE program approved June 1997 made dramatic changes in the lower-division
component of general education, building a learning community structure in which cohorts of first-
year students and second-year students enroll in clusters of thematically-linked courses. The
upper-division was modified to include advanced skills requirements (writing, speaking, critical
thinking, and information literacy). The new program would be assessed to determine if or how
well it accomplished the student learning and program goals. A more detailed description of the
approved program follows.

Eschewing the “select one course from among the many approved for each of the following fifteen
categories,” the lower division GE program is characterized by required yearlong, thematically
integrated learning communities in humanities, in social sciences, and in the sciences. The learning
community model addressed several critiques of our lower division GE program:

1. Thematic integration provided a coherent learning experience that could model the
complexity of problems humans face, the kinds of problems for which we are educating our
students
2. Cohorts of freshmen, and cohorts of sophomores, enrolling together in linked classes aimed
at helping the lower division students on our commuter campus “get connected” to each
other, the faculty, and the campus
3. Linking the three Area A requirements for communication in English (Composition, Oral
Communication and Critical Thinking) to each of the learning communities in the freshman
year offered the opportunity to develop and reinforce the basic competencies in written and
oral communication and critical thinking.
4. Continued development of composition, speaking, critical thinking, and information
literacy skills in the upper division courses.
5. Completing the freshman learning community courses were two new courses, a one-unit
Information Literacy course, and a one-unit General Studies course (taken each quarter of

4 Although much thought had been given to how mathematics and/or statistics could be linked to the learning
communities, the variety of courses required in majors and the challenge of integrating quantitative reasoning
into the learning community themes led the GE Subcommittee to choose to leave the B4 requirement a stand-
alone course.

5 A Library based, librarian-taught course was linked to each freshman learning community. Several courses,
including one in Computer Science, fulfilled this requirement.
freshman year) designed to provide academic support for students in the learning communities.

The upper division component of the General Education program remained, in form, much like the 1996-98 GE program with two notable exceptions:

1. activities supporting development of advanced skills in writing, speaking, critical thinking, and information literacy were incorporated into the three course requirements: Humanities, Social Science, and Capstone, and
2. inclusion of any course in one of the three upper division areas would depend on courses meeting the requirements of each area, rather than on departmental prefix or a presumption about where particular disciplines "fit".

Implementation—1997-98

During 1997-98 the GE Subcommittee determined how to schedule the “clusters” as CSUEB’s learning communities came to be known. The intentional linking of courses required consideration of what would best assist student learning and students’ preferred schedules, departmental and university scheduling needs and restrictions, and registration procedures. Complicating the scheduling issues was the requirement that remedial work in composition and mathematics begin at the quarter of a student’s matriculation and continue until completed. The budgetary needs of the learning community program were identified and the GE Subcommittee Chair worked with the Provost to create a budget for training faculty and supporting the learning communities.

The GE Subcommittee Chair, with the assistance of several subcommittee members, met with enrollment services to identify needed modifications to the registration process to assist students in registering for all required linked courses in the clusters, including all remedial composition courses. The Chair also met extensively with the Director of Composition and the Chair of Mathematics to schedule sufficient sections of each of the remedial courses in their respective departments. We needed to make certain that mathematics remedial courses would be available to all students with developmental requirements, regardless of their cluster schedule.

As the planning year approached its end, it became clear that the new General Education program would require a coordinator. Initially a half-time position, it is now a full-time faculty assignment.

During the Summer of 1998, Dr. Sheila Cowen, Director of Assessment and Testing, and the GE Coordinator developed an assessment program for the clusters. One of the promises made in the original proposal for the new GE was that the program would be assessed to see if it met the learning goals that had been the foundation of the program’s development. Although we did not have learning outcomes for the sciences, the humanities, or the social sciences, a full set of assessments, mostly self-report data, were designed with the assistance of the Director of Composition, Alison Warriner, the Chair of Philosophy, William Langan, and the Chair of Speech Communication, Daniel Prentice. (See appendix B for a full list of assessment measures and the assessment schedule.)

Program Revisions

During the academic year 1998-99 the clusters were significantly revised. The GE Subcommittee responded to feedback from students provided either directly or by enrollment patterns. We heard loudly that, regardless of the learning advantages of a four- or five-day-a-week schedule, students
expected and/or needed a two- or three-day-a-week schedule. With 80% of the freshmen working either full or part-time, the demand for a schedule accommodating full days for work was a necessity. Additionally, despite our experience with adult students who need late afternoon and evening classes, enrollment patterns made clear that entering freshmen do not desire such courses. The cluster scheduled for 4 to 5:50 pm enrolled barely 25 students. The subcommittee worked with the schools to revise the cluster schedules.

We heard from departments who, not electing to participate in the first round of clusters, experienced a drop in enrollment. Most particularly affected was enrollment in language courses. In Spring 1999, the GE Subcommittee recommended, CIC concurred, and Academic Senate approved (with limitations on the use of self-paced, credit-by-exam, and native speaker enrollments for GE credit) clusters consisting of three sequential courses in foreign languages. And, we examined the enrollments in Critical Thinking courses. While classes filled in the Fall, they did not fill in Winter or Spring. The GE Subcommittee recognized that too many of the entering freshmen were not prepared to take their Critical Thinking course during their first year. In May 1999, the Subcommittee, with support of the effected departments, recommended to CIC that Critical Thinking be "de-linked" from the freshmen clusters, effective Fall, 1999. CIC concurred and Academic Senate approved.

Simultaneous with review of the problems and successes of the first year, the GE Subcommittee sent a call for second-year clusters. The second-year learning communities are comprised of three thematically linked courses in Science, Humanities, or Social Sciences. In the second year, there were no linked courses in written or oral communication or in information literacy or general studies. The Subcommittee made the language study cluster an option for second-year students. Finally, the GE Subcommittee recognized the difficulties Science majors were having with heavy pre-requisite problems and recommended a linked sequence of courses in Chemistry—the Interdependence of Chemicals, Living Things, and Energy—be offered but restricted to those students with declared majors in the sciences and with few remedial needs. (The subcommittee later recommended the addition of a Biology sequence—the Diversity of Life—for science majors with remedial math requirements.) Both the Chemistry sequence and the Biology sequence continue to be restricted to science majors and both are open to students in the first or second year. CIC approved as did the Academic Senate.

A summary of changes made after the first year follows. Based on feedback from students and student enrollment patterns, several changes to first year clusters were made.

- Students heartily disliked the clusters' four- and five-day-a-week schedules. In response, cluster schedules were revised to offer students three-day-a-week and two-day-a-week schedules.
- Students expressed a desire for more and different choices in clusters. A late afternoon cluster with limited enrollment was dropped and another was moved to the second year, as faculty believed the content would be better for sophomores. In their place, two new Humanities clusters were added. The total number of freshmen clusters did not change. We determined that we needed to protect enrollment during the first years of implementation of the program.
- At the end of the first year it was apparent that few freshmen were adequately prepared to complete their critical thinking course. Enrollment did not justify continuing to link the requirement to the cluster and it was made a stand-alone requirement.
- Student and faculty feedback made clear that the General Studies support course had the potential to be a powerful learning experience for the freshmen but often failed to meet that
promise. The GE Coordinator worked with the most effective GS instructor, Leslie Rice, to design a standard curriculum, select a common text, and create a schedule that allowed time to adapt to the students’ needs in particular clusters and provide instruction in skills required for student success, while offering field trips and other activities to connect student learning to the world outside the classroom.

- Additional clusters for science majors were designed and approved for the following pre-majors and majors: Nursing, Engineering, Physics and Geology.

Since fall 1999 we have continued to refine the learning community program. Clusters have “gone on vacation,” been abandoned, been added, (their approval has been both simple and the source of painful debate). As the advisors and faculty learned more about the learning communities they began to recognize that specific clusters and/or sequences of clusters would provide courses appropriate to individual majors or allow students to “test out” a major.

The upper division courses continued to be reviewed and approved if the courses appeared to meet the area descriptions.

Fall 2002 to Fall 2003

The five-year review process began again for the GE program approved in 1997 and implemented in fall 1998 in fall 2003. A report of the history of the program’s development, program assessment data, an external reviewer’s report, and focus group reports from interviews with students and with both lecturer and full-time tenure-stream faculty teaching in the learning communities were offered to CIC for its review.

The changes suggested by CIC and later approved by the Academic Senate preserved much of the 1998 program and made a number of suggestions and a few major changes. (See Appendix C: 02-03 CIC 12-amended)

- Freshman learning communities remained intact and were continued as mandatory for all CSUEB freshmen.
- Senate endorsed a strong recommendation for each cluster to have a plan for integrating learning in the cluster courses
- Senate endorsed a strong recommendation that each cluster demonstrate a high level of collaboration supported by faculty rewards for teaching in the cluster, including administrative & clerical support, workshops with stipends, enhanced teaching units, and retention, promotion, and tenure credit for teaching in the learning communities
- The General Studies courses were reduced to 2 units across the academic year and the third unit was added to the Information Literacy course. The CIC Chair persuaded the committee that service learning was not an appropriate activity for general education (over substantial objections by the Director of GE). Students said they worked harder in the Information Lit course than a single unit of credit warranted.
- The second-year or sophomore clusters were eliminated in favor of allowing students freer choice of courses to complete their lower division requirements. CIC found that the data from both students and faculty indicated that there was little thematic integration of courses in second-year clusters. It made little sense to force students into a pre-packaged set of courses when the primary reason for the linked classes was that they would give students a superior learning experience that comes with a fully integrated set of courses, each examining a problem or question from differing disciplinary perspectives.
• Creation of an upper division science course to replace the upper-division Capstone course. The science course would include requirements that courses support development of higher levels of numeracy and quantitative reasoning, information literacy, and critical thinking. The change recognized that our students needed to have more education in science and technology given the pressing and significant scientific and technological public policy issues facing our world.

• 45 student enrollment caps on courses requiring significant writing

• Making lower division GE courses, and the second composition and critical thinking courses pre-requisite for upper-division general education courses

• The lack of approved learning outcomes from the colleges for learning in the sciences, humanities, or social sciences was identified as a significant problem. This, along with the experience of a damaging battle in the Academic Senate about who was “qualified” to teach in the discipline areas, motivated CIC to recommend that the development of learning outcomes and approval of courses meeting those learning outcomes for general education be the sole responsibility of the Academic Senate and its Committees.

These recommendations were approved by the Academic Senate on June 3, 2003 and have been in effect since fall 2004.

While the most recent review noted that we could not judge the effectiveness of the general education program without specific learning outcomes and direct measures of student learning, in the two years since that note, CSUEB has approved learning outcomes for both lower- and upper-division sciences, humanities, social sciences, writing, critical thinking, and information literacy. In addition, the Academic Senate has approved outcomes quantitative reasoning and general studies. Outcomes in oral communication are currently under review by the Academic Senate’s committees. Once approved, all areas of general education, with the planned exception of performing arts and activities, will have student learning outcomes in place. These have proven very useful in vetting courses for inclusion in the GE program.

That is not to say that we know little about the educational effectiveness of the clusters or other aspects of our general education program. Although we must rely on self-report data in many cases, the students who have participated in the program for the last four years have provided us with a clear picture of the freshman program’s strengths and weaknesses. In addition, we have pilot data on specific learning outcomes in science, humanities, social sciences, and the cultural groups and women’s requirement, and on learning in both the information literacy and quantitative reasoning courses, and longitudinal data on students’ writing competencies. The pages that follow this section include the data collected and analyzed to date about the program. But, before the data are presented, the Director’s observations about the progress and work to be done to improve CSUEB’s General Education program follow.

6 The range of courses that include performance activities, ranging from journalism to judo, painting to pilates, and basketball to ballroom dance, seems too large and varied to be captured by meaningful student learning outcomes.
Director’s Observations: The data presented below demonstrate that, while not without areas needing improvement, CSUEB’s lower-division general education program is remarkably successful in providing for a strong foundation in the basic skills of learning, speaking, writing, critical thinking, quantitative reasoning, and information literacy. Our students learn what the faculty intended when they approved the student learning outcomes in the sciences, humanities, and social sciences.

Our freshman learning community clusters are the subject of national study because of the success of our students and particularly the success of our students who enter the university in need of developmental work in composition and quantitative reasoning.

Despite strong indications of success, there is room for improvement. One area in particular to which I would like to draw CAPR’s attention includes two key items in 2002-03 CIC 12—amended, the document that describes changes in the 1998-2004 GE program. (Attached.) The two action items called for renewal of the University’s commitment to the faculty who teach in freshman learning communities and to reinvigorated integration of freshman learning community clusters. The specific language is as follows:

- Action Item 1b: “all clusters must have a strong plan to integrate” the cluster courses, and
- Action Item 1d: “all clusters demonstrate high [level of] collaboration supported by such things as workshops for instructional faculty with stipends, administrative & clerical support, enhanced teaching units, and retention, promotion, and tenure credit” for teaching in the learning communities

Unfortunately, these recommendations have met with no action from the University’s Administration or from the Academic leadership. While it is true that the University suffers significant budget strains, our freshman learning community program has demonstrated its value for the past eight years. I hope that CAPR will see the inherent value of supporting the essential characteristic of learning communities: integrated, interdisciplinary learning. In order to accomplish that integrated learning, the faculty who teach in the freshman learning communities need to be supported to do the extra work required to collaborate, communicate and teach with colleagues outside their home department. CAPR’s support of meaningful action on the recommendations made four years ago by the Committee on Instruction and Curriculum would, in my opinion, go a very long way to remedying many of the diminished program accomplishments described in the data below.
Strengthening Learning through General Education at CSUEB

Overview

When the Academic Senate approved the 1998-2006 General Education program, they accepted the learning outcomes the Subcommittee articulated for General Education. These student learning outcomes are reproduced below:

1. Communication skills: reading, writing, quantitative reasoning, critical thinking and speaking skills;
2. Problem solving competencies including the ability to define and analyze problems and synthesize and use information for the resolution of problems in an environment in which the student is working well with others;
3. Information competency;
4. Connected and integrated learning;
5. An awareness of issues of cultural, racial, ethnic, and gender diversity.

The skills, experiences, and dispositions articulated above underpin all learning, and specifically the learning described in the University’s mission statement: “To provide an academically rich, multicultural learning experience that prepares all students to realize their goals, pursue meaningful lifework, and to be socially responsible contributors to their communities, locally and globally.” The committee recognized that students’ development of these competencies is essential to a life of learning. The freshman GE program was designed to address these issues by linking writing, speaking, and critical thinking to an integrated curriculum in the freshman learning communities; by specifically addressing issues of living and working in a diverse society and increasingly small world in the general studies courses and the required course focusing on the contributions of cultural groups and women to US culture and history; and by requiring that upper-division GE courses include activities to support continued skill development. Upper-division humanities courses must contain significant writing and speaking activities that require critical thinking; upper-division social sciences must include significant opportunities for students to present ideas in writing, to build their competencies finding and using information effectively, and to use those skills to apply research data to analysis of problems of contemporary importance; and the upper-division science course must support students’ numeracy or quantitative reasoning skills, demonstrate advanced information literacy, and critical thought.

The data presented below clearly demonstrate that the lower division general education program has successfully supported and enhanced the development of students academic skills, provided a broad foundation for lower-division students, supported the development of collateral skills in problem-solving, working with others, awareness of diversity issues, and their ability to synthesize information. They report significant gains in the skills to assist them in a life of learning. As we look back at eight years of our general education program marked by freshman learning communities and clearly articulated student learning outcomes, it is clear that CSUEB’s general education program provides an effective education, with some notable exceptions, for our diverse student population.
Oral Communication (GE requirement A1)

Communication 1000, Public Speaking, is linked to all freshman clusters.

Assessment Measures

We currently have no measures of speaking competence and rely on the course completion to assess student progress. The initial plan was to videotape all incoming freshmen making a first presentation in either their COMM or GS class and then to collect another videotape in an upper-division GE course to evaluate progress. That was an unworkable plan given the time, personnel, monies, space, and tracking of students required. There are no currently approved student learning outcomes for oral communication and so no assessment has been undertaken for this requirement.

Upper-division General Education Oral Communication Assessment

We currently have no assessment plans for upper-division GE courses that require advanced oral communication skills. The most effective assessments, like the initial plan, look at students' skill development over the course of their academic career. It may be possible to sample the student population to determine how effectively we assist students' development of oral communication skills. The GE Subcommittee looks forward to Academic Senate approval of lower- and upper-division oral communication outcomes to guide assessment design.

Composition in English (GE requirement A2)

Remedial and baccalaureate courses are linked to each of the freshmen clusters. Regardless of the student's placement, except for those exempt from taking composition due to Advanced Placement or a transfer course, all freshmen work on their writing skills by writing about what they are learning in their science or humanities or social science cluster.

Assessment Measures

Student writing is the most thoroughly assessed component of general education. Pre-test measures include the English Placement Test (EPT), required for admission to the CSU unless SAT verbal scores are 550 or above or the ACT verbal scores are 24 or above, a freshman survey to assess student perceptions of writing competencies, and the WST essay test given in the Fall quarter to all freshmen enrolled in any composition course. The post-test measure is the junior rising Writing Skills Test.

Baseline data

Most CSUEB freshmen take the Scholastic Aptitude Test. Students with a score of 550 or higher on the SAT do not take the English Placement Test. "Exempt" students are those who have a college-level composition course, AP composition credit, or credit for college composition from the International Baccalaureate degree. The data on entering freshmen
(EFR) composition skills, as measured by the tests between 2000 and 2005, are displayed below.

These figures include all completed applicants to each year’s freshman class, some of whom do not attend. We are currently awaiting cleaned” data from Enrollment Services. This graph shows more exempt students than seen in previous data, presumably because some that did not attend are included. Also note the decrease of those needing remediation; this is not consistent with enrollment patterns in development-level classes. We suspect these data are an artifice of the “who actually came” problem.

The number of students needing developmental writing courses is not a local problem. CSUEB freshmen look just like those at most other CSUs. They also look like the nation. In data collected 1998-2001 (no longer gathered due to high cost and no significant change in data) CSUEB’s entering freshmen score on reading and writing measures just as those students in our national comparison group of moderately selective, urban, public institutions.

<table>
<thead>
<tr>
<th>Academic Profile</th>
<th>1998-99</th>
<th>1999-00</th>
<th>2000-01</th>
<th>National</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading</td>
<td>117</td>
<td>116</td>
<td>116.3</td>
<td>118</td>
<td>112-120</td>
</tr>
<tr>
<td>Writing</td>
<td>113</td>
<td>113</td>
<td>113.6</td>
<td>115.3</td>
<td>112-120</td>
</tr>
</tbody>
</table>
Assessment Data

The freshman learning community or cluster program has been successful in helping both remedial and college-ready students develop writing competencies. At the end of their first year, CSUEB students report much more knowledge of the requirements for and much more experience in writing papers for classes than their national cohort. Until very recently, their performance on the Writing Skills test supported the value of those experiences.

Writing Skills Test 2000-2004: The cluster students taking the WST in the fall of 2000, the first quarter in which a measurable number of the 1998 freshman class took the WST, passed at an 85% pass rate! The average pass rate on the WST has long ranged around 65% for all first time test takers. This is the first time in many years that a group of CSUEB students out-performed all other test-takers at a statistically significant level. That first fall group of test-takers was comprised of those students who required little or no remedial work. None the less, at the end of summer 2001, when most of the 1998 class had taken the test, the pass rate remained statistically significantly higher than the other first-time test takers at 72%. The data for the 1999 to 2002 classes is much the same; the Testing Office reports that the pass rate for students from the clusters, until last year, was higher than those CSUEB students not in the clusters or those who transferred into CSUEB and was responsible for stopping the decline in CSUEB student pass rates on the WST.

However, in the last year (2005) for the first time since fall 2000, CSUEB freshmen did not out-perform their transfer colleagues on the WST. These new data are troubling and demand investigation into the possible causes of the decline. One issue worth noting here is that the collaboration between composition instructors and discipline teachers in the freshman learning communities has been almost completely severed, due to lack of institutional support for instructor collaboration and planning. In fact, the composition instructors have replaced specifically linked reading and writing assignments for shared readers and assignments in science for all science clusters, in humanities for all humanities clusters, and for social science for all social science clusters. This directly affects the reinforcement achieved when students are reading and writing complementary materials that deepen their learning and demonstrate clearly that writing is a way of learning not just a skill required in some classes. In addition, the WST has changed recently and pass rates have lowered for all students. Serious inquiry into the reason(s) for the decline is warranted.

Reported experiences and academic improvement in writing competencies: The power of the learning communities in supporting student writing can be seen from the table below. Included are questions from the College Student Experiences Questionnaire (given at the end of year one. This national survey asks students to report their experiences in their first year of college and their perceptions of the amount of improvement they have made in various academic areas. Note that on all measures CSUEB students report much

7 No doubt the enforcement of remedial requirements has played a big role in student gains in writing competencies. The required enforcement began at the same time as the cluster program. It remains the case, however, that other students who have taken their composition courses at Hayward pass at a lower rate than the cluster students—despite being held to the same remediation requirements.
more awareness of requirements for sound academic writing and significantly more writing experiences than their national comparison group.

Percents are students who responded Often/Very Often or Quite a Bit/Very Much To Items About Writing Experiences Years 2000-2006*

<table>
<thead>
<tr>
<th>Question</th>
<th>Year CSEQ taken</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000</td>
</tr>
<tr>
<td>Used a dictionary or thesaurus</td>
<td>% Often/Very Often</td>
</tr>
<tr>
<td>Students responding</td>
<td>475</td>
</tr>
<tr>
<td>Thought about Grammar etc. while writing</td>
<td>% Often/Very Often</td>
</tr>
<tr>
<td>Students responding</td>
<td>476</td>
</tr>
<tr>
<td>Asked others to read your writing</td>
<td>% Often/Very Often</td>
</tr>
<tr>
<td>Students responding</td>
<td>474</td>
</tr>
<tr>
<td>Referred to a style manual</td>
<td>% Often/Very Often</td>
</tr>
<tr>
<td>Students responding</td>
<td>477</td>
</tr>
<tr>
<td>Revised a paper two or more times</td>
<td>% Often/Very Often</td>
</tr>
<tr>
<td>Students responding</td>
<td>472</td>
</tr>
<tr>
<td>Asked for Writing advice</td>
<td>% Often/Very Often</td>
</tr>
<tr>
<td>Students responding</td>
<td>476</td>
</tr>
<tr>
<td>Prepared a major report for class</td>
<td>% Often/Very Often</td>
</tr>
<tr>
<td>Students responding</td>
<td>474</td>
</tr>
</tbody>
</table>

*no data collected spring 2004

So, while we have reason to be concerned about the recent drop in successful performance on the Writing Skills Test, we can be assured that our students are being given many more opportunities to develop competencies in writing in English than their national cohort.

Upper-division General Education Writing Skills Assessment

We currently have no assessment plans for upper-division GE courses that require significant writing assignments. With recently approved upper-division writing outcomes
from Academic Senate, assessment measures will be developed separately from and/or in conjunction with assessment of learning in the majors.

Critical Thinking (GE requirement A3)

Our critical thinking courses are no longer a linked component of the freshmen learning communities. In the first year of the program, 1998-1999, Philosophy 1000, Sociology 1100, and Psychology 1100 were part of the freshmen clusters. During spring 1999, the GE Subcommittee examined enrollment patterns and found that the critical thinking classes were under-enrolled by freshmen. Two factors may have been operating: many students were continuing remedial composition courses so had no room in their schedules for a critical thinking course. The second reason is related: it became clear that students really needed to be able to write at the college level to succeed in their critical thinking courses (the skills are directly related). Advisors began to encourage freshmen with remedial requirements to wait to take critical thinking until they completed their GE composition requirement. Students who enter with college-level skills continue to be advised to take critical thinking in the first year.

It may be time to reconsider our earlier decisions. If the “cleaned” data about students qualified for college composition suggests smaller numbers of students requiring developmental coursework, it may also be time to re-link critical thinking courses, at least for the first two quarters of the freshman year. Observation of enrollment patterns suggests more students are in need of only one developmental class, and often that is a tutorial linked to the baccalaureate course, unlike patterns in the first years of the program. A more detailed analysis of enrollment in developmental courses is required before such a proposal can be made; such an analysis is underway and will be available fall 2007 in time for CIC to review the current GE program.

Assessment Measures

The original plan for assessing critical thinking was to use the College Assessment of Academic Proficiency in Critical Thinking, given at the start of the critical thinking class, to generate baseline data until a CSUEB designed assessment could be created. Since critical thinking is no longer linked in the clusters, baseline data comes from the critical thinking portion of the Academic Profile and the student surveys reporting perceptions of improvement. As noted above, we no longer give the Academic Profile to incoming students due to cost and the limited relevance of the data. With many changes in leadership in the Philosophy department, a home-grown assessment of critical thinking competencies has yet to be developed.

Baseline data

CSUEB students look just like their national comparison group of entering freshmen according to Academic Profile measures of those skills.

<table>
<thead>
<tr>
<th>Academic Profile</th>
<th>1998-99</th>
<th>1999-00</th>
<th>2000-01</th>
<th>National</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fewer students complete the critical thinking requirement in their first year than complete any of the other basic skills requirements. This seems to be due to the need to develop other competencies before taking a critical thinking course. The completion rate for the critical thinking is in the following table.

| Completion of GE Critical Thinking in First Year |
|-----------------|-------|-------|-------|-------|-------|-------|-------|
| | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 |
| % who satisfied the requirement | 45 | 39 | 37 | | | | |
| % enrolled who passed the course | 93 | 96 | 94 | | | | |

Data from 2002-2006 will be available from Enrollment Services later this year. If received April, CAPR will receive updated data, including completion rates at end of year two.

The decline in the number of students completing the GE critical thinking requirement is likely due to the course being a separate, rather than linked GE requirement. The linking of classes encourages students to take the courses, often because their GS instructors remind them to complete their clusters. Without a link in the freshman learning communities, students overlook the requirement, avoid the course because they are intimidated by it, or are discouraged because they have difficulty enrolling in any sections. Freshmen and sophomores are the last to register and often are closed out of required general education courses not in their learning community.

While we have no direct measure of student development in their critical thinking skills, the students report, on the College Student Experiences Questionnaire that they have improved their abilities to think critically. The gains CSUEB students report are similar to and higher than those reported by the national comparison group.

| Student Perceptions of Critical Thinking Improvement |
|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| % Ability to think analytically and logically | | | | | | | | |
| | 56 | 60 | 61 | 60 | 62 | 61 | 63 | 58 |
| % Ability to put ideas together and see relationships, similarities, & differences between ideas | | | | | | | | 60 |
| | 55 | 63 | 60 | 62 | 63 | 64 | 63 | 59 |
Worth particular note is the second item: the ability to put ideas together and see relationships, similarities, and differences. The results reported by CSUEB students may well be related to the freshman learning communities where such skills should be taught, directly or indirectly.

Upper-division General Education Critical Thinking Assessment

We currently have no assessment measure for upper-division GE courses that require assignments emphasizing critical thinking skills. Upper-division critical thinking outcomes have been approved for many years yet no assessment measures have been developed either separately or in concert with assessment of learning in the majors. The Committee on Instruction and Curriculum’s Subcommittee on Critical Thinking has recently placed on its agenda a review of both lower- and upper-division critical thinking learning outcomes and will tackle this issue when time permits.

Quantitative Reasoning (GE requirement B4)

Math and Statistics courses fulfilling the lower-division quantitative reasoning requirement are not linked to freshmen clusters. During the development of the 1998-2002 GE program the GE Subcommittee debated the best way to teach quantitative reasoning. Some advocated linking Statistics 1000 to the Science and Social Science clusters while others argued that the different requirements for mathematics and statistics in the majors, and the very large number of entering freshmen who needed remedial work in math made the prospect of linking any quantitative reasoning course to the clusters problematic at best. While the learning community structure has proven to reinforce composition competencies for developmental students, the fear that there would be no reinforcement of mathematical competencies in other cluster classes. That view held and the course remains a separate part of GE and not part of the learning community experience.

Assessment Measures

All students entering a California State University are required to take Entry Level Math (ELM) or SAT to measure their abilities to reason quantitatively. These measures provide baseline data for freshmen. Because of the wide range of courses students take to satisfy the GE requirement, MATH 1100, the Nature of Math, MATH 1130, College Algebra, Statistics 1000 or 1001, MATH 1180, Math for Business, and others, assessing students’ quantitative reasoning skills at the end of year one poses significant problems. The one bright exception is data that has been collected systematically over the years by the Department of Statistics.

Baseline Data

Most of our freshmen take the Scholastic Aptitude Test. A score of 550 or higher exempts students from taking the Entering Level Math Test. The data on entering freshmen (EFR) quantitative reasoning skills, as measured by the tests, are displayed below. The first chart shows details of a 1998-2000 study. The second chart shows results from 2000-2005 applicants, and combines exempt and college-ready students under the single label “college ready.” The third chart does not distinguish between college-ready and math exempt. Further it indicates the level of remediation needed among applicants, ranging from a full
year to one quarter or college ready. The percentage of college-ready applicants is clearly increasing, and that is consistent with enrollment patterns. The degree of change may be inflated because not all of the students who applied and were accepted enrolled.
Mathematics Placement

Percentage

Remediation needed | College ready

- 2001
- 2002
- 2003
- 2004
- 2005

GE CAPR Five Year Review
April 2007
As with the composition data, the large number of “admissible” students who require developmental work to reach college competency is similar to freshman classes at our sister campuses. The trend is national in scope. CSUEB freshmen look just like those at other public urban universities that constitute our national comparison group with no significant difference in how our entering freshmen score on measures of their ability to use mathematical data, despite the number who need developmental mathematics.

Academic Profile

<table>
<thead>
<tr>
<th></th>
<th>1998-99</th>
<th>1999-00</th>
<th>2000-01</th>
<th>National</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>115</td>
<td>114</td>
<td>113.8</td>
<td>113.9</td>
<td>107-121</td>
</tr>
</tbody>
</table>

Completion of GE Quantitative Reasoning in First Year 1998-2006

<table>
<thead>
<tr>
<th></th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>% who satisfied the requirement</td>
<td>42</td>
<td>53</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% enrolled who passed the course</td>
<td>92</td>
<td>92</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data will be forthcoming from Enrollment Services. CAPR will receive the data if they arrive by the end of April.
Direct measures of quantitative reasoning skills:

The Academic Senate approved student learning outcomes for the general education lower division Quantitative Reasoning requirement. The three outcomes describe knowledge (quantitative literacy), numeracy (quantitative skills), and problem-solving (quantitative) student learning outcomes. (See Student Learning Outcome graph.) Thanks to the efforts of the former Chair of the Statistics Department, we have data from direct measures of those outcomes. The first graph below displays how much some students who took the Statistics 1000 assessment exam improved their quantitative skills in each of the three outcome areas. The graph shows the five cohorts and their average percent correct on the three learning outcomes: the ability to think and reason quantitatively (thinking), the ability to use and apply quantitative reasoning (skills), and the basic ability to use the language of quantitative reasoning appropriately. There is little difference in the Cohorts. The most striking on is the drop, in 2005, on literacy scores. This is partially the result of a copy center error removing four questions from the exam one term.

Average Percent Acquisition of Quantitative Reasoning Student Learning Outcomes

These data suggest that the freshmen scores are demonstrating a lack of competency—between 40 and 60% of the required levels of literacy, skill development, and problem-solving or thinking quantitatively. However, 100% on this scale would be the expected performance of a few of the brightest senior majors in statistics. These data demonstrate that our freshmen have acquired quantitative reasoning competencies expected of a lower-division college student.
The following table showing the grade distribution for these students indicates that 95% of these students are passing the QR courses, with roughly 1/3 of those passing earning A, B, or C. Previous studies showing pre-post gains in Statistics courses indicate that it is not worth while to spend class time continuing to study change from initial levels of knowledge. These graphs are similar to ones for all students in Statistics 1000 classes.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td>A</td>
<td>170</td>
<td>25.3</td>
<td>25.3</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>246</td>
<td>36.6</td>
<td>61.9</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>223</td>
<td>33.2</td>
<td>96.1</td>
</tr>
<tr>
<td></td>
<td>NC</td>
<td>33</td>
<td>4.9</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>672</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Another look at the acquisition of knowledge data by grade in the course shows separation in content mastery by grade on the student learning outcomes for the 672 Frosh in this study. Clearly there are issues that Quantitative Reasoning faculty can consider by studying which problem-types are missed or offering different materials for student use in learning. For example, 87.2% of all these students correctly identified a normal histogram from among other choices of a bimodal histogram, a skewed histogram, and a u-shaped distribution. Only 46.7% could correctly identify the approximate correlation coefficient from a graph even when the choices are fairly clear by sign and magnitude.
Average Percent Acquisition of Knowledge by Grade in Statistics 1000

Student Learning Outcomes for Native Freshmen

Student Experiences & Perceptions of Gains in Quantitative Reasoning

Students report gains similar to their national counterparts in their abilities to reason using mathematical concepts and methods on the College Student Experiences Survey (given at end of first year).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Very often or often memorized formulas, definitions, technical terms and concepts</td>
<td>66%</td>
<td>63%</td>
<td>68%</td>
<td>57%</td>
<td>58%</td>
<td>61%</td>
<td>64%</td>
<td>66%</td>
</tr>
<tr>
<td>Used mathematical terms very often or often to express a set of relationships</td>
<td>52%</td>
<td>54%</td>
<td>52%</td>
<td>49%</td>
<td>48%</td>
<td>43%</td>
<td>53%</td>
<td>57%</td>
</tr>
<tr>
<td>Thought they had made very much or quite a bit of progress in analyzing quantitative problems</td>
<td>45%</td>
<td>53%</td>
<td>45%</td>
<td>48%</td>
<td>49%</td>
<td>51%</td>
<td>50%</td>
<td>40%</td>
</tr>
</tbody>
</table>
Upper-division Quantitative Reasoning Assessment

With the recent requirement for an upper-division science course in general education, the last of the basic skills, quantitative reasoning, identified in outcome number one of program goals, is extended to an advanced level. The science requirement includes a learning goal of “advanced numeracy and quantitative reasoning”. There are currently no specific learning outcomes for “advanced numeracy and quantitative reasoning” and therefore no assessment plan is currently in place. A plan for assessing the success of this competency will be developed after more specific learning outcomes are articulated.

Information Literacy (GE requirement G4)

Library 1012, Information Literacy, is linked to all freshman learning communities. Instruction in information literacy became a GE requirement with the 1998-2002 GE program. For many entering freshmen the library is not their first source of information; students turn more to the internet for their research. Learning how to locate, evaluate, and use information effectively is vital in a world of information overload and a multitude of information sources. A new course, designed by librarians for the clusters, is CSUEB’s response to the need. CSUEB’s decision to explicitly teach information competency anticipated a CSU system move to make information competency a required component of undergraduate education. CSUEB librarians also work with interested cluster faculty to design library research assignments that require practice of the skills necessary to be competent users and consumers of information.

Baseline and Assessment Data

At the beginning of the Library course, students are given a pre-test, designed by the CSUEB librarians, to measure their information competencies. The test is given at the course’s end and the percentage improvement in correct answers is one measure of learning. Those data are reported below.

<table>
<thead>
<tr>
<th>Fundamentals of Information Literacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-test</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>1998-99</td>
</tr>
<tr>
<td>1999-00</td>
</tr>
<tr>
<td>2000-01</td>
</tr>
<tr>
<td>2001-02</td>
</tr>
<tr>
<td>2002-03</td>
</tr>
<tr>
<td>2003-04</td>
</tr>
<tr>
<td>2004-05</td>
</tr>
<tr>
<td>2005-06</td>
</tr>
</tbody>
</table>

\(^8\) The great majority of students complete Library 1010 or Library 1515 (an unlinked version of 1010 offered in summer quarters) to satisfy their information literacy requirement. A small number of students take Computer Science 1020. Librarians have worked with the CS 1020 faculty so that the students receive instruction on using the library, locating appropriate data sources, evaluating data for quality, and effective use of information.
The improvements in the pre-test scores of the entering freshmen are likely due to increasing emphasis in the high schools on information literacy skills. CSUEB librarians are actively involved in helping the high school librarians and teachers in our communities develop instructional strategies to assist students in developing competencies in locating, evaluating, and using information.

Students report that they have made significant gains in their ability to find, evaluate, and use information from a variety of sources. Although we have few scores from our national comparison group against which to measure our successes in teaching information literacy, on those two items for which we have comparisons, the CSUEB library taught course, and the librarian's assistance in designing research assignments, makes a significant difference in our students' skills.

Percent library users are % students who responded Occasionally/Often/Very Often

Items Concerning Library Use

Years 2000-2006

<table>
<thead>
<tr>
<th>Question</th>
<th>Year CSEQ Taken</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Norm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000</td>
<td>2001</td>
<td>2002</td>
<td>2003</td>
<td>2005</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>Used the library to study</td>
<td>Percent library users</td>
<td>86%</td>
<td>84%</td>
<td>82%</td>
<td>79%</td>
<td>81%</td>
<td>84%</td>
</tr>
<tr>
<td></td>
<td>Students responding</td>
<td>477</td>
<td>466</td>
<td>387</td>
<td>434</td>
<td>411</td>
<td>515</td>
</tr>
<tr>
<td>Found something interesting browsing</td>
<td>Percent library users</td>
<td>70%</td>
<td>66%</td>
<td>66%</td>
<td>66%</td>
<td>56%</td>
<td>65%</td>
</tr>
<tr>
<td></td>
<td>Students responding</td>
<td>480</td>
<td>465</td>
<td>388</td>
<td>431</td>
<td>411</td>
<td>515</td>
</tr>
<tr>
<td>Asked a librarian/staff Member for help</td>
<td>Percent library users</td>
<td>83%</td>
<td>80%</td>
<td>75%</td>
<td>79%</td>
<td>73%</td>
<td>69%</td>
</tr>
<tr>
<td></td>
<td>Students responding</td>
<td>480</td>
<td>465</td>
<td>389</td>
<td>429</td>
<td>409</td>
<td>513</td>
</tr>
<tr>
<td>Read assigned material not texts</td>
<td>Percent library users</td>
<td>69%</td>
<td>67%</td>
<td>70%</td>
<td>65%</td>
<td>55%</td>
<td>62%</td>
</tr>
<tr>
<td></td>
<td>Students responding</td>
<td>480</td>
<td>463</td>
<td>388</td>
<td>428</td>
<td>411</td>
<td>513</td>
</tr>
<tr>
<td>Used index or database to find material</td>
<td>Percent library users</td>
<td>92%</td>
<td>91%</td>
<td>88%</td>
<td>86%</td>
<td>84%</td>
<td>84%</td>
</tr>
<tr>
<td></td>
<td>Students responding</td>
<td>478</td>
<td>464</td>
<td>389</td>
<td>430</td>
<td>410</td>
<td>514</td>
</tr>
<tr>
<td>Wrote bibliography for a term paper</td>
<td>Percent library users</td>
<td>85%</td>
<td>80%</td>
<td>81%</td>
<td>79%</td>
<td>76%</td>
<td>78%</td>
</tr>
<tr>
<td></td>
<td>Students responding</td>
<td>477</td>
<td>465</td>
<td>387</td>
<td>430</td>
<td>408</td>
<td>515</td>
</tr>
<tr>
<td>Gone back to read basic references</td>
<td>Percent library users</td>
<td>53%</td>
<td>45%</td>
<td>51%</td>
<td>51%</td>
<td>40%</td>
<td>49%</td>
</tr>
<tr>
<td></td>
<td>Students responding</td>
<td>478</td>
<td>464</td>
<td>389</td>
<td>429</td>
<td>409</td>
<td>513</td>
</tr>
</tbody>
</table>
The results reported in the table above suggest that CSUEB freshmen are doing somewhat less of the information-related activities they did in the earlier periods of the learning community program. This may be due to the reduction in the number of research writing assignments students receive (see below for more detail) or that the kinds of research their assignments require. It also may mark less collaboration among faculty in the learning communities than in earlier years, as institutional support and faculty rewards have diminished.

None the less, CSUEB students report information competencies at least equal to their national cohort and significantly more on a couple of dimensions. For example, CSUEB freshmen use the library for studying quite a bit more than the national norm. This observation is supported by the analysis of case study data collected by Cathy Engstrom from Syracuse University as a part of a national study of the effects of learning communities on underserved students. Her report on CSUEB students (attached) notes the importance of the Library for our students:

Students reported that they valued being in an academic environment that supported their goal of achieving a college degree. When library hours were cut, however, in their second year, many reported this as a significant problem. They had learned to use the library, its resources, its academic aura, and its space to support their learning. Many of these students came from homes where the demands of studying were not well understood or supported. They found the library a welcoming and supportive environment. These students felt the limitation of hours as a real loss and as an indication that the university did not understand how important having a safe and supportive place to study was to their academic success. (2005, page 5)

The original design of the freshman learning communities was that the librarians would collaborate with the discipline faculty on the structure and goals of writing assignments. The librarians would teach the basic nature of information, how to ask appropriate and researchable questions, locate and analyze data sources, learn appropriate bibliographic skills, and assist the students in developing the skills to complete the quarter’s research assignment. That close collaboration between the information literacy instructor and the cluster faculty has significantly diminished as institutional support has diminished, as departments have substituted lecturers at the last minute and as class size has increased. Both the connections between the information literacy and discipline course have suffered (as with the composition faculty noted above) as has the commitment to providing freshmen with significant writing experiences in cluster courses.

Upper-division Information Literacy Assessment

We currently have no assessment plans for upper-division GE courses that require assignments that support the development of advanced information competence. With approved upper-division information literacy outcomes from Academic Senate, assessment measures will be developed separately from or in concert with assessment of learning in the majors.
Summary of Basic Skills Data

On every basic academic skill that is a part of the General Education requirements, oral and written communication, critical thinking, quantitative reasoning, and information literacy, the data clearly document improvement of student competencies. Not only do the assessments we have measure improvement, but the students know they have improved and are able to articulate the ways in which their skills have developed. CSUEB students' self-reports generally show more opportunities to learn and greater growth in their academic skill competencies than self-reports of our national comparison groups.
Learning in Science, Humanities, and Social Science: Clusters

Overview

Fundamental to general education is instruction to achieve literacy in the natural sciences, humanities, and social sciences. The California State University system requires that students be provided a broad foundation in those discipline areas as lower-division students; the upper-division requirements add a richness that comes from more advanced coursework. Cal State East Bay's lower-division GE program places the discipline areas at the center of the clusters. The faculty in the disciplines identify appropriate themes for general education and organize three courses around that theme to provide both breadth and depth required of a solid foundation. The cluster structure is intended to present faculty and students with an integrated teaching and learning experience where disciplinary perspectives on the theme are compared and contrasted by the faculty and students, where collaboration among the faculty may provide interdisciplinary instruction to deepen students' learning, and where teaching writing, speaking, and information literacy in the context of the themes and the disciplines deepen learning and demonstrate the ways those skills support a life of learning regardless of discipline.

Lower-division general education is more than the freshman learning community experience. Students complete basic skills and, usually, one discipline area (science, humanities, or social science) in the first year. In their second year, they take the six required courses in the other two discipline areas as freely selected, stand-alone courses. Assessing the degree to which lower division GE deepens CSUEB students' learning in the disciplines became possible when, in 2005, learning outcomes in the lower division discipline areas were approved by the Academic Senate.

We now have the capacity to directly assess student learning of those approved outcomes, the data below include the first direct measures of one outcome each in lower-division science, humanities, and social science.

Upper-division General Education

We currently have no measures of the educational effectiveness of our upper-division general education courses. Development or selection of assessment measures for complex knowledge expected of upper division courses will follow after procedures and policies for assessing lower-division learning outcomes have been determined by the Academic Senate.
Natural Sciences (GE Area B)

Lower-division science: CSUEB requires all students complete one course in the physical sciences, one in the life sciences, and one elective in the sciences. One of the three science courses must include a laboratory. Six freshmen science clusters are offered: five are designed specifically for students planning a major in the sciences.

Baseline data

The Academic Profile data demonstrate that the Cal State East Bay students are like their national comparison group in their knowledge of science when they enter the university.

<table>
<thead>
<tr>
<th>Academic Profile</th>
<th>1998-99</th>
<th>1999-00</th>
<th>2000-01</th>
<th>National</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>115</td>
<td>114</td>
<td>114.5</td>
<td>116</td>
<td>109-119</td>
</tr>
</tbody>
</table>

Assessment Data

Academic Year 2005-06 saw the creation of Faculty Learning Communities to design a procedure for assessing one student learning outcome in the sciences. A rubric was developed in the fall and piloted in winter and spring. The results of the assessment are reported below.

A. Rubric for Lower Division GE Outcomes in Life and Physical Science Courses

Physical Science (B1): Students should be able to demonstrate broad science content knowledge in the physical sciences such as the nature and structure of matter, Earth's place in the Universe, or the conservation of energy and matter.

Life Science (B2): Students should be able to demonstrate broad science content knowledge in the life sciences (such as cellular structure, the diversity and classification of life, or biological evolution) and be able to describe fundamental concepts in the life sciences that distinguish them from the physical sciences.

Winter rubrics and data: black
Spring changes to rubrics and data: blue.
Totals for items and percentages, where possible: green

<table>
<thead>
<tr>
<th>Learning Outcome INDICATOR</th>
<th>4 - EXEMPLARY</th>
<th>3 - PROFICIENT</th>
<th>2 - ACCEPTABLE</th>
<th>1/0 - MARGINAL/ UNACCEPTABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Can communicate three or more key concepts presented in the course.</td>
<td>Student can clearly and accurately present key concepts, and can explain the concepts/ideas/principles by using his/her own words rather than offering the original, instructor-based source verbatim.</td>
<td>Student can clearly and accurately present most key concepts, and can typically explain the concepts/ideas/principles in his/her own words rather than offering the original, instructor-based source verbatim.</td>
<td>Student can correctly describe key concepts but in broad or narrow way without being to elaborate on specifics. The explanation is, more often, communicated verbatim from the original, instructor-based source.</td>
<td>Student cannot correctly present most core concepts, and cannot explain them using his/her own words nor using the exact wording from original instructor-based source.</td>
</tr>
<tr>
<td>Total number of artifacts scored on indicator 1: 427</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Winter #: 27</td>
<td>Spring #: 104</td>
<td>Winter #: 22</td>
<td>Spring #: 38</td>
<td>Winter #: 18</td>
</tr>
<tr>
<td>Total number: 131</td>
<td>Total number: 80</td>
<td>Total number: 99</td>
<td>Total number: 117</td>
<td></td>
</tr>
</tbody>
</table>

| Winter %: 30 | Spring %: 32.2 | Winter %: 21.2 | Spring %: 18 | Winter %: 17.3 | Spring %: 25.1 | Winter %: 35.6 | Spring %: 24.8 |
| Total percentage: 30.7 | Total percentage: 18.7 | Total percentage: 23.2 | Total percentage: 27.4 |

2. Can use technical terminology and scientific language learned in the course.

| Total number of artifacts scored on indicator 2: 578 |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Winter #: 34 | Spring #: 164 | Winter #: 21 | Spring #: 145 | Winter #: 15 | Spring #: 79 | Winter #: 34 | Spring #: 86 |
| Total number: 198 | Total number: 166| Total number: 94| Total number: 120|

| Winter %: 32.7 | Spring %: 34.6 | Winter %: 20.2 | Spring %: 30.6 | Winter %: 17.7 | Spring %: 16.7 | Winter %: 32.4 | Spring %: 18.1 |
| Total percentage: 34.3 | Total percentage: 28.7 | Total percentage: 16.3 | Total percentage: 20.8 |

3. Can make inferences based upon scientific theories and/or scientific data collected during a class exercise or provided for them.

| Total number: 178 | Total number: 196 | Total number: 71 | Total number: 72 |

| Winter #: 55 | Spring #: 123 | Winter #: 32 | Spring #: 164 | Winter #: 23 | Spring #: 48 | Winter #: 45 | Spring #: 27 |
| 1/0. Student does not recognize most specialized terminology and typically cannot correctly use them to explain concepts or to answer course-related questions. | 2. Student has trouble accurately interpreting scientific data/scientific theories and, consequently, has a limited ability to make inferences using these sources. | 3. Student can typically make strong inferences based on accurate interpretations of scientific data and/or scientific theories. | 4. Student consistently makes strong inferences based on accurate interpretations of scientific data and/or scientific theories. |
The data the faculty report demonstrate that most of the students taking science courses achieve the learning described by the rubric’s indicators for the learning outcome: “to demonstrate broad science content knowledge”. These data may also cause some concern and call us to ask whether, as a university community, we are satisfied with as many as 27% of the students failing to reach an acceptable level of performance on one of the indicators. If not, then we should engage the questions about how we might improve teaching or assignments or assessments to help more students taking science courses for general education acquire the knowledge desired by the faculty in the physical and life sciences.

Upper-Division Science: Starting fall 2004, all CSUEB students are required to complete one upper-division science general education course. At this time, we have no plan for assessment of the approved general education learning outcomes in science. Once the protocol for assessing lower division general education student learning outcomes is approved, the committees of the Academic Senate will begin to develop an appropriate plan to assess general education learning in upper-division science.
Humanities (GE Area C)

Humanities requirements in general education require students to take at least one course in the fine arts and one course in letters. The third required course can be either a fine arts or letters course. There are four freshman humanities clusters and one cluster that includes one humanities course.

Baseline data

The Academic Profile provides the picture of students' abilities in the humanities as they enter the university. As with the other measures provided by the Academic Profile, CSUEB students enter with the same ability to read and respond to ideas from the humanities as the national comparison group of students.

<table>
<thead>
<tr>
<th>Academic Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998-9</td>
</tr>
<tr>
<td>113</td>
</tr>
</tbody>
</table>

Assessment data

Academic Year 2005-06 saw the creation of Faculty Learning Communities to design a procedure for assessing one student learning outcome in the humanities. A rubric was developed in the fall and piloted in winter and spring. The results of the assessment are reported below

GE Humanities Rubric Score Sheet 2005-2006

Instructions: Please provide the number and percent of students scoffing in each quadrant of the rubric for each indicator.

Outcome 1: Students will demonstrate through oral and written works how foundational works in the humanities illuminate enduring human concerns and the intellectual and cultural traditions within which these concerns arise, including both classical and contemporary artists and theorists.

Items in black indicate winter numbers

Items in blue indicate spring numbers and/or revisions to the rubric

Items in green are combined winter and spring numbers

<table>
<thead>
<tr>
<th>Indicator 1: Ability to identify points of engagement between foundational works in the humanities and human concerns</th>
<th>Superior</th>
<th>Sufficient</th>
<th>Developing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student consistently is able to correctly identify or reference points of engagement between foundational works in the humanities and enduring human concerns presented in course materials and lectures.</td>
<td>Student usually correctly identifies points of engagement between foundational works in humanities and enduring human concerns presented in the course materials and lectures.</td>
<td>Student rarely correctly identifies points of engagement between foundational works in humanities and enduring human concerns presented in materials and lectures. Student rarely is able to identify or reference points of engagement between foundational works in humanities and enduring human concerns presented in course materials and lectures. Student cannot write/talk about points of engagement between foundational works in humanities and enduring human concerns presented in the course materials and lectures in his/her own words.</td>
<td></td>
</tr>
<tr>
<td>Student consistently writes/talks accurately about points of engagement between foundational works in the humanities and enduring human concerns presented in course materials and lectures in his/her own words.</td>
<td>Student usually/sometimes is able to write/talk accurately about points of engagement between foundational works in humanities and enduring human concerns presented in course materials and lectures.</td>
<td>Student rarely correctly identifies points of engagement between foundational works in humanities and enduring human concerns presented in materials and lectures. Student rarely is able to identify or reference points of engagement between foundational works in humanities and enduring human concerns presented in course materials and lectures. Student cannot write/talk about points of engagement between foundational works in humanities and enduring human concerns presented in the course materials and lectures in his/her own words.</td>
<td></td>
</tr>
</tbody>
</table>
As was seen in the sciences, most students demonstrate learning described in the rubric for the learning outcome assessed. And, as with the sciences, the data suggest that we should decide, as an academic community if we are satisfied that our general education program leaves as many as one-quarter of our students without a satisfactory level of knowledge and understanding described by at least one of the indicators of the outcome.

Upper-division Humanities: At this time, we have no plan for assessment of the approved general education learning outcomes in humanities. Once the protocol for assessing lower division general education student learning outcomes is approved, the committees of the Academic Senate will begin to develop an appropriate plan to assess general education learning in upper-division humanities either separately or in conjunction with courses in the humanities majors.

Social Sciences (GE Area D)

CSUEB students are required to take three lower-division courses from three different social science disciplines. The particular departments or approaches to social science research are not stipulated in the requirements. Three social science clusters are offered for first-year students; eight are available for second-year students.
Baseline Data

As with all other measures provided by the Academic Profile, CSUEB students score as their national comparison cohort do as they enter the university. Those data are displayed in the table below.

<table>
<thead>
<tr>
<th>Academic Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998-99</td>
</tr>
<tr>
<td>113</td>
</tr>
</tbody>
</table>

Assessment Data

Academic Year 2005-06 saw the creation of Faculty Learning Communities to design a procedure for assessing one student learning outcome in the social sciences. A rubric was developed in the fall and piloted in winter and spring. The results of the assessment are reported below.

GE Social Science Rubric

2005-2006 Score Sheet

Instructions:
Please provide the number and percent of students scoffing in each quadrant of the rubric for each indicator.

Outcome 1: Students must demonstrate, orally and in writing, basic recognition of the application of disciplinary concepts derived from the social or behavioral sciences in the study of human behavior, individually and in society.

Blue items indicate changes in rubrics and data for spring. Green equals total winter and spring data.

<table>
<thead>
<tr>
<th>Indicator 1: Theories And Models</th>
<th>Superior</th>
<th>Sufficient</th>
<th>Developing</th>
</tr>
</thead>
<tbody>
<tr>
<td>The student, with consistent accuracy, describes the major components of two or more standard theories or models of the discipline and, in either oral or written descriptions can consistently use his or her own words rather than the worlds of the lecture or text.</td>
<td>The student is frequently limited to non-essential terms in descriptions of the major components of two standard theories or models of the discipline and, in either oral or written descriptions, can only infrequently use his or her own words rather than the words of the lecture or text.</td>
<td>The student is unable to describe the major components of standard theories or models of the discipline, or offers definitions that have consistent and major errors and cannot provide accurate descriptions without quoting the lecture or text.</td>
<td></td>
</tr>
<tr>
<td>In either oral or written work, the student demonstrates comprehension of two or more standard theories or models of the discipline and can apply them to novel situations.</td>
<td>In either oral or written work, the student demonstrates limited understanding of two standard theories or models of the discipline.</td>
<td>The student is unable to describe the major components of standard theories or models of the discipline, or offers definitions that have consistent and major errors and cannot provide accurate descriptions without quoting the lecture or text.</td>
<td></td>
</tr>
<tr>
<td>Indicator 2: Key Disciplinary Terms</td>
<td>SCORE 1</td>
<td>SCORE 2</td>
<td>SCORE 3</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Number: 76 189 265 524</td>
<td>Number: 106 148 254 428</td>
<td>Number: 53 34 87 170</td>
<td>Number: 37 50 87 117</td>
</tr>
<tr>
<td>Percentage: 38.8 57.6 50.6</td>
<td>Percentage: 54.1 63.8 59.3</td>
<td>Percentage: 27 14.7 20.3</td>
<td>Percentage: 18.9 21.6 20.3</td>
</tr>
</tbody>
</table>

The student consistently accurately defines key disciplinary terms and consistently uses his or her own words rather than the worlds of the lecture or text when defining terms, either orally or in writing.

The student can infrequently use key disciplinary terms and must occasionally rely on the lecture or text when defining terms, either orally or in writing.

The student cannot define key disciplinary terms and is unable to provide accurate definitions either orally or in writing, without quoting the lecture or text.

<table>
<thead>
<tr>
<th>Indicator 3: Professional Applications</th>
<th>Number: 67 83 150 328</th>
<th>Number: 56 109 207 328</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number: 53 34 87 170</td>
<td>Number: 37 50 87 117</td>
<td></td>
</tr>
<tr>
<td>Percentage: 34.2 25.3 29</td>
<td>Percentage: 18.9 21.6 20.3</td>
<td></td>
</tr>
</tbody>
</table>

Orally or in writing, the student can accurately identify a range of real world situations and professional employment contexts in which key theories and terms can be applied.

Orally or in writing, the student can identify a limited number of real world situations and professional employment contexts in which key theories and terms can be applied.

The student cannot, orally or in writing, identify real world situations and professional employment contexts in which key theories and terms can be applied.
<table>
<thead>
<tr>
<th>SCORE 3</th>
<th>Number: 61</th>
<th>117</th>
<th>Number: 66</th>
<th>123</th>
<th>Number: 34</th>
<th>82</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total scores:</td>
<td>178</td>
<td></td>
<td>189</td>
<td></td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>Percentage:</td>
<td>37.9</td>
<td>36.3</td>
<td>41</td>
<td>38.2</td>
<td>21.1</td>
<td>25.5</td>
</tr>
<tr>
<td></td>
<td>36.9</td>
<td></td>
<td>39.1</td>
<td></td>
<td>24.0</td>
<td></td>
</tr>
</tbody>
</table>

As with the sciences and humanities, most of CSUEB students acquire the knowledge the faculty describe in the student learning outcome. And as with the two other discipline areas, we should engage the question of whether we are satisfied that as many as one-quarter of the general education students did not satisfactorily achieve the learning described in at least one outcome indicator. If we are not satisfied, then the community should discuss what needs to be done to change those numbers.

Upper division Social Sciences: At this time, we have no plan for assessment of the approved general education learning outcomes in social sciences. Once the protocol for assessing lower division general education student learning outcomes is approved, the committees of the Academic Senate will begin to develop an appropriate plan to assess general education learning in upper-division social sciences either separately or in conjunction with courses in the social science majors.

Summary of Learning in the Discipline Areas

The vast majority of freshman students complete one discipline area of general education in their first year. The data on the quality of the students’ learning in the natural sciences, humanities, and social sciences demonstrates that a considerable majority of students achieve the learning measured in the pilot test. This is the case whether the course was part of a learning community cluster or stand-alone. It is worth noting, however, that regularly one-quarter of the students does not achieve the learning described in the outcome.
Program Outcomes:
Creating Campus Connections, Retention, and Diversity

Overview

When the Academic Senate approved the 1998-2009 General Education Program, it endorsed the goals of improving lower-division students' academic success, increasing retention, providing the skills and attitudes required for a life of learning, and helping our freshman students get connected to each other, the faculty, and the university. The learning community design promised a structure in which those goals might be achieved for freshmen. Learning communities, by creating cohorts of students taking intentionally linked classes together, construct an environment in which students have to work very hard to not connect with one another. Students who feel connected to peers and the university community may be more likely to stay in school and perform better in classes. The longer students are in school, the more likely they are to enhance their appreciation for and ability to live a life of learning. This web of connected outcomes is beginning to develop at CSUEB.

The data reported below show that students are feeling connected to their faculty. While CSUEB's retention rate has always been acceptable, it is gradually increasing, until now we are among the top three CSUs in the percentage of students who return for their second year. The students report that they perceive themselves to be better able to take responsibility for their learning and to have gained skills that will support their learning throughout their lives.

Building Community

The lower-division general education clusters are designed to build community among students and connect them with the faculty. Prior to the development of the clusters the freshmen who comprise about six to eight percent of the CSUEB students, were distributed across courses in which most of the students were significantly older than they. (The average age of CSUEB freshmen is 18 while the average age of undergraduates is 27.) While young college students may benefit from the modeling provided by older students, too often they are simply silenced and uninvolved.

Baseline

There is no data collected about “feeling a part of a community” before or as the students enter CSUEB.

Assessment

The data presented in the table below demonstrate the strength of student connections to their faculty—a critical component in retaining students and in improving their learning. These self-report data suggest that CSUEB students connect with their faculty at or above the national average.
Items Pertaining to Experiences with Faculty

Years 2000-2006

<table>
<thead>
<tr>
<th>Question</th>
<th>Year CSEQ taken</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000</td>
</tr>
<tr>
<td>Asked instructor for course information</td>
<td>Percent of Students Who Accessed Faculty</td>
</tr>
<tr>
<td></td>
<td>Students responding</td>
</tr>
<tr>
<td>Discussed academic program with faculty</td>
<td>Percent of Students Who Accessed Faculty</td>
</tr>
<tr>
<td></td>
<td>Students responding</td>
</tr>
<tr>
<td>Discussed term paper with faculty</td>
<td>Percent of Students Who Accessed Faculty</td>
</tr>
<tr>
<td></td>
<td>Students responding</td>
</tr>
<tr>
<td>Discussed career plans with faculty</td>
<td>Percent of Students Who Accessed Faculty</td>
</tr>
<tr>
<td></td>
<td>Students responding</td>
</tr>
<tr>
<td>Worked harder due to instructor feedback</td>
<td>Percent of Students Who Accessed Faculty</td>
</tr>
<tr>
<td></td>
<td>Students responding</td>
</tr>
<tr>
<td>Socialized with faculty outside of class</td>
<td>Percent of Students Who Accessed Faculty</td>
</tr>
<tr>
<td></td>
<td>Students responding</td>
</tr>
<tr>
<td>Discussed with others outside of class</td>
<td>Percent of Students Who Accessed Faculty</td>
</tr>
<tr>
<td></td>
<td>Students responding</td>
</tr>
<tr>
<td>Asked instructor about performance</td>
<td>Percent of Students Who Accessed Faculty</td>
</tr>
<tr>
<td></td>
<td>Students responding</td>
</tr>
<tr>
<td>Worked to meet faculty expectations</td>
<td>Percent of Students Who Accessed Faculty</td>
</tr>
<tr>
<td></td>
<td>Students responding</td>
</tr>
<tr>
<td>Worked with faculty member on research</td>
<td>Percent of Students Who Accessed Faculty</td>
</tr>
<tr>
<td></td>
<td>Students responding</td>
</tr>
</tbody>
</table>

Percent of Students Who Accessed Faculty is the % of students who responded Occasionally/Often/Very Often
It is clear from these data that the freshman component of the General Education program has been successful in supporting our students’ connections to the faculty. Connecting to the campus and the campus community as a whole is more complex, but vitally important. Data on student success repeatedly argues that when students feel connected to their faculty, the campus, and feel a part of the community, they are more likely to attend classes, perform better in their classes, and continue their education.

Connecting to the campus community: Engstrom’s report on 3 years of interviews with 50 students who began as freshmen at CSUEB describes the ways in which the learning communities help students feel connected to and members of the campus community:

The composition and General Studies faculty were particularly important in supporting the students’ sense of belonging to the university and their increasing confidence. Students emphasized that having the same instructor throughout their developmental composition classes and their General Studies courses was a powerful positive influence. The English and/or General Studies faculty often played critical support roles in promoting students’ success by acting as liaison between the student and other cluster faculty and between students and the university’s support services and bureaucracy. (pages 3-4)

The data illuminate the importance of providing all freshmen with courses that (1) challenge their abilities, (2) give timely and regular feedback so that they can understand how to improve, and (3) supply the support to help them achieve their goals. The students identified their General Studies teachers and Linda Beebe, GE Program Coordinator and Advisor, as key academic supports. They highly valued the tutoring services provided by the Student Center for Academic Achievement. (The students noted that their composition and/or General Studies faculty were the ones to refer them to the SCAA for tutoring assistance.) EOP students commented repeatedly over the two years that their EOP counselor was invaluable to their success. The General Studies and English faculty connected students with other campus resources, most typically, the Career Development Center. It would be difficult to over-emphasize the importance of GS and composition faculty and GE office staff to students feeling validated for their choice to attend CSUEB and their confidence as students.

After the first year, however, students tended to become disconnected. They forgot the value of academic advising and were lost about how to get it. They began turning to their peers and when trouble arose, returned to Linda Beebe for help. (pages 4-5)

As Engstrom data suggest, while the first year works well for our students in connecting them to the campus and campus resources, as well as to their faculty, the loss of support structures in the second year should cause us to examine both advising services and outreach to students from campus organizations to assist students after their first year.
Awareness of issues of cultural, racial, ethnic, and gender diversity

CSUEB is committed to "educational excellence for a diverse society." General Education is central to achieving that mission. On a majority minority campus, it is too easy to assume because we are in each other's presence we will learn about one another and how to work together. Such assumptions are difficult to support and the University, in endorsing this outcome, recognized the need to teach about diversity in its many forms.

Assessment Measures

Assessment of the degree of support given to developing an awareness of the complex issues related to diversity is based, in part, on self-report data. Students are asked on the College Student Experiences Questionnaire their awareness of issues related to human differences and similarities, their experiences of others unlike themselves, and the social, educational and political issues related to the diversity of humans. In addition, Engstrom's 2005 report on case studies with 50 freshmen at CSUEB underlines the importance of the freshmen learning communities in helping students become comfortable working with and making friends with those who are different. Finally, in AY 2005-06, the Faculty Learning Community designed a rubric to assess student learning on one of the student learning outcomes for the required course examining the contributions of cultural groups and women to US history and culture. These data are reported below.

Baseline data

There is none. Neither the Entering Student Survey nor the Academic Profile measured students' awareness with and sensitivity to issues of cultural, racial, ethnic, and gender diversity.

Assessment Data

Students' reports of their experiences with students who are different from themselves in the clusters are presented below. The table below summarizes all student responses on the College Student Experiences Questionnaire.

Percentages are % students who responded Occasionally/Often/Very Often Items Pertaining to Experiences with Diversity Years 2000-2006

<table>
<thead>
<tr>
<th>Question</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2005</th>
<th>2006</th>
<th>NORM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Became acquainted with students with different backgrounds</td>
<td>Percent</td>
<td>96%</td>
<td>97%</td>
<td>97%</td>
<td>96%</td>
<td>95%</td>
<td>96%</td>
</tr>
<tr>
<td>Students responding</td>
<td>473</td>
<td>466</td>
<td>375</td>
<td>427</td>
<td>406</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>Became acquainted with students of a different race</td>
<td>Percent</td>
<td>98%</td>
<td>98%</td>
<td>98%</td>
<td>97%</td>
<td>98%</td>
<td>97%</td>
</tr>
<tr>
<td>Students responding</td>
<td>468</td>
<td>465</td>
<td>374</td>
<td>427</td>
<td>406</td>
<td>512</td>
<td></td>
</tr>
</tbody>
</table>
The data below provide a national comparison of student experiences. It is gratifying that our students are far more active in making connections with those who differ from them than their cohort around the nation. Given a majority minority campus population, these data are not surprising. The data also show that we need to provide more opportunities for students to move beyond acquaintance to serious engagement each other on issues that arise from our diversity.

Clearly, our students report significant experience with those who differ from them and significant gains in their knowledge about human diversity. However, these data do not help us understand the extent to which such outcomes are the “natural” result of the student population or if students are taught skills and encouraged to interact with those who are different. Engstrom’s 2005 data provides a bit of insight into this issue.

Learning about and from diversity: Many students told us they were learning a great deal about diversity in their learning community classes, particularly in General Studies and composition. They reported that they were increasingly
comfortable getting to know peers who were different from them and that they were learning from the diverse perspectives and backgrounds their classmates shared. They felt that learning about and from diversity was both encouraged and validated in their classes. (page 4)

In fall, 2005 a Faculty Learning Community was formed to develop an assessment method for one of the approved student learning outcomes for the required course that examines the contributions of cultural groups and women. Data were collected in a pilot study in winter and spring quarters. These data are presented below.

GE Cultural Groups and Women Rubric
2005-2006
Quarterly and Summary Score Sheet

Instructions:
Please provide the number and percent of students scoring in each quadrant of the rubric for each indicator.

Outcome 1: Comprehension of the origins and functions of discrimination, exploitation, and oppression of groups, both historically and in the present, and the ability to identify various patterns of discrimination.

<table>
<thead>
<tr>
<th>Indicator 1:</th>
<th>Accomplished</th>
<th>Developing</th>
<th>Disengaged</th>
</tr>
</thead>
<tbody>
<tr>
<td>Articulates a cogent and reasonable definition of one of these concepts: “discrimination,” “exploitation,” or “oppression.”</td>
<td>Definition of concept is logical with the correct level of specificity and coverage: i.e. neither too narrow nor too general. The definition correctly identifies the range of practices and structures included in the concepts of discrimination, exploitation, and oppression.</td>
<td>The student seems to have a grasp of what the concept means but is unable to articulate a clear and logical definition. Student provides definition of concept that is muddled: it may be too specific, too general, make references to realities outside of the purview of the term, and/or lack an internal logic.</td>
<td>Student does not understand the concept or understands it incorrectly.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Winter #:</th>
<th>Spring #:</th>
<th>Winter #:</th>
<th>Spring #:</th>
<th>Winter #:</th>
<th>Spring #:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of artifacts scored:</td>
<td>112</td>
<td>123</td>
<td>49</td>
<td>119</td>
<td>15</td>
<td>41</td>
</tr>
<tr>
<td>Total number:</td>
<td>235</td>
<td>168</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winter %:</td>
<td>63.6</td>
<td>43.5</td>
<td>27.8</td>
<td>42</td>
<td>8.5</td>
<td>14.5</td>
</tr>
<tr>
<td>Total Percentage:</td>
<td>51.2</td>
<td>36.6</td>
<td>12.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indicator 2:</td>
<td>Indicator 3:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of artifacts scored:</td>
<td>Total number of artifacts scored:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>202</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student is able to explain with specificity the ways that the group is encumbered by discrimination, exploitation, and/or oppression. Student uses appropriate examples, statistics, and/or other supporting evidence.</td>
<td>Student identifies the ways that the patterns of oppression, discrimination, and/or exploitation have changed over time and can logically explain why these workings/patterns have changed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student describes in general terms the way that discrimination, exploitation, and/or oppression encumber (or have encumbered) the group they are studying.</td>
<td>Student recognizes that the patterns and working of oppression, discrimination, and/or exploitation have changed over time but cannot identify how or why.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student cannot describe the way that discrimination, exploitation, and/or oppression encumbers (or has encumbered) the group are studying.</td>
<td>Student does not identify how—or does not recognize that—oppression, discrimination, and/or exploitation have changed over time.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Win# 110</td>
<td>Winter #: 1</td>
<td>Winter #: 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sprg#: 57</td>
<td>Spring #: 12</td>
<td>Spring #: 43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number: 167</td>
<td>Total number: 114</td>
<td>Total number: 51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Win% 62.9</td>
<td>Winter %: 57.6</td>
<td>Winter %: 24.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sprg% 76</td>
<td>Spring %: 48</td>
<td>Spring %: 32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Percentage: 66.8</td>
<td>Total Percentage: 56.4</td>
<td>Total Percentage: 25.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Win #: 43</td>
<td>Winter #: 32</td>
<td>Winter #: 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sprg #: 13</td>
<td>Spring #: 32</td>
<td>Spring #: 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number: 56</td>
<td>Total number: 51</td>
<td>Total number: 37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Win% 24.5</td>
<td>Winter %: 18.1</td>
<td>Winter %: 12.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sprg% 17.3</td>
<td>Spring %: 32</td>
<td>Spring %: 6.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Percentage: 22.4</td>
<td>Total Percentage: 25.2</td>
<td>Total Percentage: 10.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Win #: 22</td>
<td>Winter #: 5</td>
<td>Winter #: 22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sprg #: 5</td>
<td>Spring #: 5</td>
<td>Spring #: 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number: 27</td>
<td>Total number: 5</td>
<td>Total number: 27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Win% 12.6</td>
<td>Winter %: 20</td>
<td>Winter %: 12.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sprg% 6.7</td>
<td>Spring %: 6.7</td>
<td>Spring %: 6.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Percentage: 10.8</td>
<td>Total Percentage: 6.7</td>
<td>Total Percentage: 6.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This first direct measure of student learning indicates clearly that a significant majority of students taking courses that emphasize the contributions of women and minority groups to US history and culture achieve the learning described by the indicators of the learning outcome. In this one case, fewer students fail to achieve the learning desired. Whether the courses, teaching methods, or assessments can serve to improve our success in the sciences, humanities, or social sciences remains a question.

While a campus dedicated to educating students to be multiculturally competent citizens needs to do more to understand how we can accomplish that critically important goal, the data presented above indicate that we are able to affect many students and assist them in developing the competencies necessary to approach the goal.
Retention

If we build communities, improve student academic success, and help students develop the attitudes and competencies to learn through life, surely they should continue their education at CSUEB. Each university hopes to increase the rate at which students return to campus each year until they graduate. A well-educated citizenry is the goal of higher education and is our best protection and our best strategy for improving the lives of those with whom we share the planet. Not to be overlooked is the cost benefit the university has with students who enroll as freshmen and stay at CSUEB until graduation.

Baseline and Assessment data

Data against which to compare the success or failure of the current GE program in retaining students is the rate at which we retained students in the years before 1998. If the learning communities have an impact, we should see that in the rate of first to second year persistence, and beyond to graduation. In the chart below, the one, two, three, and four year retention rates for students from 1990 to 2002 are presented.
These data show a gradual decrease in the retention of regularly admitted freshmen from a high in 1994 to a low in 1998. 1998 had the lowest one-year retention for the whole class of entering freshmen. A breakdown of data indicates that the loss during and after the first year of special admit and exception admit students was responsible for the drop in overall retention that year. There was a slight increase in retention of regularly admitted students. Fall 1998 was the first year of CSUEB’s freshman learning communities and also the year that the CSU required students to enroll in and pass remedial courses during their first year of college. For the students who met all college admission requirements but needed
developmental classes in writing and/or composition, retention rates have gradually increased, now matching the highest retention rate among those students since 1994 where taking and passing remedial classes was not a requirement for continued university study. The spike in retention in years three and four seen in the 2001 and 2002 freshmen cohorts certainly requires additional study.

According to the latest IRA data, the retention of freshmen from fall 2004 to fall 2005, the latest data currently available shows a one year retention rate of 84% of regularly admitted students, placing CSUEB on par with the two Cal Polytechnics and among the top five campuses in the CSU!

CSUEB’s freshman program has demonstrated success in creating community among our freshmen, connecting them to faculty, each other, and campus resources. Our freshman learning communities and stand-alone lower-division courses that focus on the contributions that cultural groups and women made and make to US culture and history are successful in helping students acquire the learning described in the student learning outcomes. The payoff is in our outstanding retention rates, not only for one year but for three and four years, and, we hope to graduation.
1.5 Comparison to CSU General Education Breadth Requirements: EO 595

Executive Order 595 describes the requirements of a general education program for all California State Universities. Both specific requirements and unit totals are stipulated. What follows compares CSUEB’s requirements to those outlined in EO 595.

<table>
<thead>
<tr>
<th>CSU General Education – Breadth Requirement descriptions</th>
<th>Unit minimums</th>
<th>CSUEB GE requirements</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: Communication in the English language, to include both oral communication and written communication, and in critical thinking, to include consideration of common fallacies in reasoning.</td>
<td>12 quarter units</td>
<td>12 quarter units 4: Oral Communication 4: Composition 4: Critical Thinking</td>
<td>none</td>
</tr>
<tr>
<td>B: Inquiry into the physical universe and its life forms, with some immediate participation in laboratory activity, and into mathematical concepts and quantitative reasoning and their applications.</td>
<td>18 quarter units</td>
<td>20 quarter units 12 lower division physical science, life science, science elective, and science lab 4 upper division science elective 4 quantitative reasoning</td>
<td>2 more at CSUEB (uses 2 unit extra* from 72 minimum requirement)</td>
</tr>
<tr>
<td>C: The arts, literature, philosophy and foreign languages</td>
<td>18 quarter units</td>
<td>16 quarter units 12 lower division fine arts, letters, elective 4 upper division humanities elective</td>
<td>2 fewer at CSUEB</td>
</tr>
<tr>
<td>D: Human social, political, and economic institutions and behavior and their historical background.</td>
<td>18 quarter units</td>
<td>16 quarter units</td>
<td>2 fewer at CSUEB</td>
</tr>
<tr>
<td>E: Study to equip human beings for lifelong understanding and development of themselves as integrated physiological and psychological entities.</td>
<td>4 quarter units</td>
<td>0 units—unenforced overlay requirement 4 Satisfies Area F for transfer students</td>
<td>4 fewer at CSUEB</td>
</tr>
<tr>
<td>F: Performing Arts & Activities</td>
<td>0 quarter units</td>
<td>4 quarter units</td>
<td>4 more at CSUEB</td>
</tr>
<tr>
<td>G: Freshman Seminar & Information Literacy</td>
<td>0 quarter units</td>
<td></td>
<td>4 more at CSUEB</td>
</tr>
<tr>
<td>MINIMUM REQUIRED UNITS</td>
<td>72 quarter units(2 > area totals)</td>
<td>72 quarter units</td>
<td>none</td>
</tr>
</tbody>
</table>
Additional EO 595 Policies of Relevance

<table>
<thead>
<tr>
<th>Requirement</th>
<th>CSUEB Requirement/Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Division Requirement: to be upper division level and must be taken no sooner than the term in which upper-division status (completion of 90 quarter units) is attained:</td>
<td>12 quarter units</td>
</tr>
<tr>
<td>Residency Requirements: At least 12 of the 72 quarter units shall be earned at the campus granting the degree.</td>
<td>12 quarter units</td>
</tr>
<tr>
<td>Cultural Groups & Women: Instruction approved to fulfill the following requirements (General Education-Breadth Units) should recognize the contributions to knowledge and civilization that have been made by members of diverse cultural groups and by women:</td>
<td>4 quarter unit overlay</td>
</tr>
<tr>
<td>Double-counting: Campuses may permit “double counting” of courses for General Education-Breadth and major requirements and prerequisites only after giving careful consideration to the impact of such actions on General Education-Breadth programs. Decisions to permit double counting in General Education Breadth and a degree major may be made only after an approval is provided through campuswide curricular processes.</td>
<td>Allowed</td>
</tr>
<tr>
<td>American Ideals Requirement: Up to six semester units taken to meet the United States History, Constitution, and American Ideals Requirement (Title 5 of the California Code of Regulations, Section 40404) may be credited toward satisfying General Education-Breadth Requirements at the option of the campus.</td>
<td>Academic Senate considered allowing double counting AY 2003-04; rejected on grounds that GE learning outcomes and those for Code are too demanding for one quarter-length course</td>
</tr>
<tr>
<td>Accepting Transfer GE: Students admitted to a CSU campus with full certification may not be held to any additional lower-division general education requirements; students admitted to a CSU campus with subject-area certification may not be held to any additional lower-division general education coursework in the subject areas certified. Neither full certification nor subject-area certification exempts students from unmet lower-division graduation requirements that may exist outside of the general education program of the campus awarding the degree.</td>
<td>CSUEB follows all transfer protocols, accepts all certified courses and includes the graduation requirement of a second composition course to complete lower division GE requirements in Area G. Transfer students complete Area F as a graduation requirement. CSUEB holds transfer students to 72 total GE units.</td>
</tr>
</tbody>
</table>
1.6 Other Program Achievements

CSUEB's learning community program has been honored by being selected as one of fifty campuses with learning communities to participate in the National Learning Communities Project. CSUEB's lower division GE program has been used as a case study for the success of our students who take developmental composition classes have in our freshman learning communities. The Director has served as a resource faculty to help other faculties at other colleges and universities develop learning community structures that serve their students.

In Spring 2003, CSUEB was selected as one of 25 Community Colleges and Universities with learning community structures for incoming students with need for developmental education in composition and/or mathematics, to be a focus of longitudinal study by Vincent Tinto and Cathy Engstrom of Syracuse University. The Lumina Foundation and the Hewlett Foundation have funded this study to examine the many barriers to and the support for students attempting to achieve a baccalaureate degree. Cal State East Bay was one of 5 campuses to be selected as a case study. Dr. Engstrom and her research assistants interviewed 50 CSUEB freshmen over three years to understand more fully those factors that delayed or frustrated them and what resources they turned to for support in achieving academic success. An edited version of Tinto and Engstrom's report to the Flora and David Hewlett Foundation (edited to focus on CSUEB issues) is attached to this report in Appendix B.

2. Five Year Plan

During Academic Year 2007-2008 the Committee on Instruction and Curriculum will review the student learning outcomes, curriculum, courses, pedagogies, assessment protocols of CSUEB's General Education program. Any new or revised requirements will be determined by actions of the Academic Senate.

2.1 Curricular issues: Issues that face the program in the next five years include 1) decisions on program assessment policies, measures, and strategies; 2) support for faculty teaching in freshman learning community program; 3) discussion of relationship between general education credit courses and upper division courses for the major; 4) reflection upon assessment data to refine GE expectations and learning outcomes; 5) direct measures of additional GE breadth requirements.

2.3 Faculty: The Office of General Education does not hire faculty to teach in the freshman learning communities with one exception: we are the academic department for General Studies so hire and house the faculty who teach the General Studies Activities or freshman seminar courses. Currently there are five graduate students, five lecturers (four of whom began teaching as graduate students), and one tenured full professor teaching the freshman seminar. The mix seems to work well for the freshmen as the graduate students provide their colleagues with fresh reminders of the pace and challenges of the quarter system, while the lecturers and tenured instructors provide mentoring for the graduate students and support as they learn to become teachers.
There is, however, one issue with two manifestations that requires considered reflection: the preponderance of part-time lecturers teaching in freshman learning communities. The goals of learning communities include 1) creating connections with faculty to assist in major selection, general advising, and retention, and 2) integrated learning. In fact, the recommendations of the last curriculum review made a strong argument that the University should provide incentive and support for faculty teaching in the clusters to strengthen the interdisciplinary connections in the learning community. When we rely primarily on lecturers, we undermine both goals: lecturers, even long-time 1.0 lecturers are less likely to be available to students for building academic relationships. They do not provide the advising nor the perspective on the major that a full-time tenure stream faculty person would. Lecturers contractually cannot be asked to spend non-class or office hour time on work that is not independently compensated. This significantly undermines the connections between and among courses in the cluster. At this point, neither the GE budget nor the University through other compensation provides any incentive for lecturers or full-time tenure stream faculty to do the extra work required to teach in freshman clusters. Finally, in the past, lecturers are often appointed just before classes begin, are not aware that the course they teach is in a cluster, and do not know the other cluster faculty. Such conditions make it quite remarkable that our overall data are so strong. Think of what we could do with more tenured faculty teaching in clusters they designed with their colleagues.

The figures for the 2006-07 freshman clusters are provided below and include only those courses in science, humanities, and social science, not the linked courses in English composition, communication, information literacy, or the freshman seminar. Clearly, those students who are majoring in one of the sciences receive their instruction from the regular faculty in their departments. The same is not true for students who are undeclared or simply majoring in Business, any of the Liberal Arts, or Recreation. The loss of opportunities to recruit undeclared or undecided students from the cluster should be reason enough to have more regular faculty teaching in the freshman program.

<table>
<thead>
<tr>
<th>Discipline Area</th>
<th>Full-time Tenure Stream</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Courses</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>clusters for science majors</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Clusters for pre-nursing and non-science majors</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Humanities Courses</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Social Sciences</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Totals for non-science major clusters</td>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>Totals</td>
<td>16</td>
<td>17</td>
</tr>
</tbody>
</table>
Appendix
“A”
CALIFORNIA STATE UNIVERSITY, HAYWARD

TO: Academic Senate

FROM: Committee on Instruction and Curriculum CIC

SUBJECT: Proposed New General Education Program, Effective Fall Quarter, 1998

PURPOSE: Action by the Academic Senate

ACTION REQUESTED: That the Academic Senate Approve the Attached New General Education-Breadth Requirements; Effective Fall Quarter, 1998

BACKGROUND

INFORMATION: During the 1996-97 academic year, the University is required to undertake its Five-year Program Review of the General Education-Breadth Requirements. This review was given added impetus by the 1995 WASC accreditation visiting team which found the CSUH G.E. program to have a "lack of clarity" which "means lack of relevance and lack of meaning" resulting in "little sense of a unified and integrated academic experience for undergraduates at Hayward." The team report found "little evidence of University-wide planning for the reinforcement and full development of basic competencies in oral communication, critical thinking, and quantitative/analytic skills." To prepare for the program review, the University sent a four-person team to the Asheville Institute on General Education (sponsored by the Association of American Colleges and Universities) in summer, 1995. That G.E. Workgroup, augmented by two CIC members, held a series of faculty, staff, and student forums in 1995-96 to study our G.E., its problems, and other successful models.

In Fall, 1996, CIC established a special G.E. Subcommittee, consisting of two faculty from each school; one representative each from the Library, the University Advisement Center, and Curriculum/Academic Programs; and a student member (who did not attend). The G.E. Subcommittee was charged with creating multiple models of G.E. which would combine teaching and assessment of fundamental skills, use structures and teaching methods known to improve student learning, and provide coherence and community for our students. Three models were developed and, after review by CIC,
distributed widely across campus and discussed in an open forum at a special meeting of the Academic Senate on February 11, 1997. At the forum, considerable dissatisfaction was voiced over the models which were characterized as being too revolutionary and lacking defined content (the latter purposely unspecified by the subcommittee). During the remainder of the Winter Quarter, the subcommittee solicited and received numerous oral and written comments, suggestions, and criticisms.

In Spring Quarter, the subcommittee developed a statement of G.E. objectives (1996-97 CIC 21) about which there seemed to be some consensus and which aligned with the baccalaureate degree objectives developed by the statewide Academic Senate. These were submitted to the CSUH Academic Senate for information and comment with the hope that if they were accepted, the subcommittee would design a G.E. program consonant with them. However, because of the vagaries of the calendar, it appeared that the Academic Senate would not provide commentary until it was too late for the subcommittee, CIC, and the Academic Senate to act on a new proposal before the end of Spring Quarter (in time for inclusion in the 1998-2000 Catalog). As a result, the subcommittee moved forward to develop a G.E. proposal based on the objectives it had identified and on the comments it had received from across the University. The subcommittee submitted its proposal to CIC on April 21, 1997.

CIC reviewed the proposal at its regular meeting on that date. The original document included some recommendations on adapting the requirements for transfer students whose lower division G.E. requirements are incomplete, but CIC found the suggestions confusing and needing more study. Those recommendations were dropped from the final proposal leaving the Senate-approved interim G.E. transfer evaluation procedure in place for transfers pending further study. Thus the attached proposal would primarily affect students who start at Hayward as first-time freshmen except for the new Upper Division G.E. which would apply to all students under the 1998-2000 and subsequent catalogs. CIC voted 8-0 in favor of the attached proposal.

LWM:dm
Attachments
General Education for the 21st Century CSUH

A Possible Framework

II. GE Structure for First Time Freshmen

Introduction

The proposed General Education structure is designed to meet the needs of those students that enter CSUH as the first time freshman students. The specific needs of the transfer students and how they will fit into the proposed structure will be addressed later.

Central features of the proposed GE structure are:

- **Cohorts for first and second year students.** Entering freshmen will take a minimum of 27 units of course work with the same group of students. Students will participate in different cohorts in their freshman and sophomore years. Cohorts have been found to increase both learning and students' sense of connection to the University.

- **Regular assessment of learning and enforcement of skill level requirements for progression in General Education.** Assessments at the end of the first year in the basic subjects will be given. Students must pass those assessments to progress into the Sophomore General Education sequence.

- **Flexible upper division program.** The proposed GE encourages departments to identify and recommend a list of specific courses for their majors to demonstrate linkages between upper division GE and the major.

- **Capstone experience during the final year.** The experience will assist students in integrating the knowledge they have gained in their undergraduate education and demonstrating their competence in using that knowledge.

Freshman Level

Minimum of 32 units for the freshman level distributed as follows:

A. 17 units Basic Skills which includes 12 units Basic Subjects¹: (4 unit course in English composition, *and* 4 unit course in Oral Communication, *and* 4 unit course in Critical Thinking, linked to the thematic sequence/cluster), *and* 4 unit course in Quantitative Reasoning, *and* a minimum of 1 unit course in Information Literacy². The prohibition on counting courses taken in the major department for General Education does not apply to these Basic Skills courses.

¹ To the extent possible, linked sections of the Basic Subjects will use topics, texts and assignments from the sequences/cluster. Faculty teaching both the thematic sequences/cluster and the linked Basic Subjects will consult to ensure substantive linkages in content between the sequences/cluster and the linked courses. Further, students who fail to achieve "Sophomore" level skills on the annual assessment of Basic Subjects will be required to complete a second course in the area of weakness before enrolling in Sophomore-level GE.

² Information Literacy course may be linked to the thematic sequences/cluster or taken as a separate course offered by the schools.
B. 15 units in one knowledge area (Sciences, or Social Sciences, or Humanities) which includes 12 unit, 3-term thematic sequence/cluster\(^3\) coursework and 3 unit activity module\(^4\) (1 unit per term).

At the end of the Freshman year, students will take standardized assessments to measure knowledge and skills. Only students who meet the standards will be permitted to enroll in Sophomore level General Education courses.

Sophomore Level

28 units in Sophomore level which is distributed as follows:

A. Two 12 unit, 3-term thematic sequences/clusters (in the two knowledge areas - science, social sciences, humanities - not taken during Freshman year)\(^5\)

B. 4 units Performing Arts and Activities.

The Lower Division GE total number of units: 60 units minimum.

Junior Level

8 units of coursework in upper division Humanities and Social Sciences\(^6\): Students will choose from a list of courses recommended by their major. The distribution of units are as follows:

A. 4 unit upper-division course in history, literature or philosophy (or in the Humanities) that includes a significant writing component and emphasizes advanced communication and critical thinking skills; and

B. 4 unit upper-division course applying the methodologies or research findings of the social sciences to significant contemporary problems and emphasizing advanced writing and information literacy skills.

\(^3\) The following applies to all Thematic Sequences/Clusters:

- 12 units is a minimum requirement for the thematic sequences or course clusters. For example, a sequence/cluster in the Sciences (or in Languages) with lab units offered during one or more terms may be offered for 12 or more units.

- Thematic sequences/clusters may be created from three courses already offered. In that case, faculty would be expected to develop thematic linkages through topics, texts, assignments, lectures or lab experiences to model for students the integration of knowledge presented in the sequences/cluster. Courses, however, must be Freshman or Sophomore level classes. Upper division courses, adapted for thematic sequences/clusters, must be revised to be appropriate for first or second year college students.

- Thematic sequences/clusters may be newly developed course sequences/clusters designed specifically for Freshman or Sophomore General Education.

- We encourage team-teaching where appropriate and feasible. It is not required.

\(^4\) In Activity Module students will be assigned specific activities connected to course content/assignments which concentrate on developing or honing particular skills. Both general and honors activities will be offered.

\(^5\) The Sophomore sequences/clusters will be different from the Freshman courses. These sequences/clusters, developed in the same ways as the Freshman courses, should be created with the expectation that students will have demonstrated skills of at least an end-of-the-freshman-year level.

\(^6\) Students must have upper-division status (completed 90 units) and have satisfied the University Writing Skills Requirement or passed a second-tier writing skills course before enrolling in Junior level GE.
Capstone

4 unit capstone course: The course will emphasize the integration of knowledge from disciplines employing different methods of inquiry from at least two of the major areas (sciences, social sciences, humanities); requires a major writing component and emphasizes advanced communication and critical thinking skills.

The Upper Division GE total number of units: 12. This includes 8 units in Junior year and 4 units in Capstone.

Additional Requirements

4 units of Cultural Groups and Women remains as now. The courses in this requirement may be taken simultaneously with other GE requirements or as a separate course. Completion of U.S. history, U.S. Constitution and California government requirement will continue to be met in addition to GE.

Summary

Minimum 60 units Lower Division GE including:
- 32 units Freshman Level
- 28 units Sophomore Level

12 units Upper Division GE including:
- 8 units in Junior Level
- 4 units in Capstone

Total GE: 72 units minimum

7 Students must have completed their junior level GE requirements before they may enroll in the capstone course. All upper-division General Education courses must be selected from outside the students' major department but may be used to complete requirements for the major. Departments may take the lead in soliciting and assisting the development of course sequences or clusters which would support students' learning in the major.
A Proposed Conceptual Framework for the GE

Objective
- Development of personal and intellectual abilities
- Community connectedness
- Global understanding
- Values and ethics
- Foundation for career development

Structure
- Diversity of student backgrounds, experiences, interests, skills, and goals

Basic Skills

Implementation
- Communication
- Critical thinking
- Quantitative reasoning
- Information technology

Clusters courses in:
- Physical and life sciences
- Social sciences
- Humanities & arts

Major and minor fields of study

Upper-division humanities & social sciences

Capstone

Integrative knowledge
Appendix

"B"
Appendix
“C”
TO: Academic Senate
FROM: Committee on Instruction and Curriculum
SUBJECT: 5-year Review of General Education
PURPOSE: For Action by the Academic Senate
ACTION REQUESTED: That the Academic Senate Approve the Revision of the General Education Program, 96-97 CIC 24; Effective Fall 2004

BACKGROUND INFORMATION: In the year 2001-2, CIC was charged with the 5-year review of the General Education Program that had been adopted in 1998. To begin the formal review process, an outside reviewer was secured, and CIC read all the documents of the Program. In addition, CIC held university-wide forums to obtain information from several constituencies: faculty, students, staff, college deans, and the Office of Assessment and Testing. Each of these constituencies responded in writing to a questionnaire, and also verbally in the discussion forums held on campus. These varied sources of information were then compiled for the members of CIC, along with the External Reviewer’s Report, submitted by Jackie Donath of CSU Sacramento. In addition, Sally Murphy, the Director of General Education, submitted an Executive Report on the status of the General Education Program over the past five years.

The responses of these constituencies varied widely. The members of CIC worked long and hard to discern themes and consistencies, with some success. They interviewed the Director of General Education and the General Education Subcommittee. They reviewed the various documents several times, and brainstormed extensively about ways to improve the Program. Eventually they decided on several alternative approaches to revising the Program and put them up on a Blackboard site for further discussion, inviting the members of the Executive Committee for their feedback. Then, on January 31st, 2003, the members of CIC attended a full-day retreat to take advantage of an extended session for further discussion and drafting of a revision, a revision that seemed called for in light of the feedback the committee had received.

The committee reached agreement on several recommendations, which they distributed electronically to the university community, requesting feedback. On April 7th, 2003, CIC conducted an open forum on the Action Items. They then revisited them in light of feedback from the forum and from further discussion on a Blackboard site dedicated to the G.E. Program Review. CIC reached final agreement on the attached recommendations, unanimously on five of the eight items. The proposal retains the Freshman Clusters (with additional support and a strong emphasis on integration; see Attachment 2); drops the third-quarter GS1013 unit with certain exceptions; adds one unit to the Library course; discontinues the Sophomore Clusters but
substitutes possible linked courses; recommends that the lower-division G.E. courses applying for G.E. status be reviewed by the G.E. Subcommittee (instead of the college curriculum committees in Science and ALSS); changes the upper-division G.E. requirements to add 4 units of Science; changes the capstone requirement to a Life-long Learning requirement that will become an overlay of selected upper-division G.E. courses; recommends that the new upper-division G.E. science courses include numeracy and quantitative analysis, information literacy, and critical thinking; recommends that all upper-division G.E. courses requiring advanced writing be capped at 35; and proposes that English 1002 and Critical Thinking be prerequisites for all upper-division G.E. courses.

As part of their review, CIC passed two additional Action Items to formulate two new ad hoc subcommittees of CIC—one to draft a Mission Statement and one to draft Learning Outcomes for the General Education Program. The External Reviewer for the General Education Program recommended a new mission statement and learning outcomes in the strongest of terms. These ad hoc committees, subject to approval by the Executive Committee, will be staffed by the end of Spring term, 2003.

ATTACHMENTS: Attached to this document are three additional documents:

1. **Summary of CIC Action Items** regarding revisions of the G.E. Program, taken from CIC minutes. The Action Items were passed by CIC in February and revised in May, 2003, after consultation with university faculty.

2. **Proposed Revisions to 96-97 CIC 24, General Education for the 21st Century CSUH: A Framework, II. G.E. Structure.** This document outlines the structure of the new G.E. program that was adopted in 1996. We thought the Academic Senate would like to see graphically the changes being proposed, so deletions are indicated by lines through the words, and changes and additions are indicated in highlighting. If your copy prints in black-and-white, the highlighting will show as slightly gray.

3. **Proposed Changes in the CSUH G.E. Pattern and CSU G.E. Objectives (E.O. 595).** This document incorporates the recommended changes into the existing document that shows how the G.E. program complies with EO595. Reflected here is that the G.E. Subcommittee will review courses applying for G.E. (but the courses themselves will be reviewed by the appropriate curriculum subcommittee in each college).

Non-substantive changes by ExComm at their May 13, 2003 meeting are included. These changes were proposed to clarify the document and its intent.
Summary of CIC Action Items Regarding Revisions of the G.E. Program

At its meetings in February, 2003, after 18 months of deliberations, CIC adopted a series of motions regarding the Lower-division and Upper-division G.E. program in response to its charge of a five-year review. After feedback from the university community, CIC revisited the motions and on May 5, 2003, issued this final draft of recommendations.

1. Action Items
 a. M/S/P (Seitz/E. Stoper) 7-0-1 to recommend that the freshman clusters continue and be linked to skills courses. Each cluster would include courses from one, two, or three of the broad areas of the Sciences, Social Sciences, or Humanities. During the sophomore year, students will be permitted to choose from a list of lower division courses that may or may not be linked.
 b. M/S/P (E. Stoper/Claus) 9-0-0 to recommend that all clusters must have a strong plan to integrate the three courses.
 c. M/S/P (Ramsdell/E. Stoper) 8-0-0 to recommend the removal of GS1013, General Education Activities III, and add one unit (for a total of two) to LIBY 1010, Fundamentals of Information Literacy. Special sections of GS1013 may be offered for students who are on academic probation, in the Honors program, in health/biosciences, or interested in service learning.
 d. M/S/P (E. Stoper/A. Stoper) 8-0-0 to recommend that all clusters show high collaboration and be supported by such things as: workshops for instructional faculty with stipend, administrative and clerical support, enhanced teaching units, and promotion-tenure-retention credit.

2. M/S/P (Seitz/Stronck) 8-0-0 to request that the General Education application of all areas (B, C, D, F, and G) be reviewed by the G.E. Subcommittee, the CIC, and the Academic Senate.

3. M/S/P (Seitz/Stronck) 8-0-0 to recommend that upper division G.E. requirements in areas C, D & E (Humanities, Social Sciences, & Capstone) be replaced with upper division area B, C, and D (Sciences, Humanities, and Social Sciences) courses.

4. M/S/P (Seitz/E. Stoper) 8-0-0 to recommend that the requirement of life-long learning, as described in EO 595, be a possible overlay for upper-division G.E. courses.

5. M/S/P (Seitz/A. Stoper) 8-0-1 to recommend that upper division G.E. science courses include numeracy and quantitative analysis, information literacy, and critical thinking

6. M/S/P (Ramsdell/Pan) 6-0-2 to recommend that all upper-division G.E. courses requiring advanced writing be capped at 35.

7. M/S/P (Green/Seitz) 10-0-0 to recommend that A2 (ENG 1002 Expository Writing II) be made a prerequisite for all the upper-division G.E. courses.

8. M/S/P (Claus/Green) 10-0-0 to recommend that A3 (Critical Thinking) be made a prerequisite for upper-division G.E. courses.
Introduction

The proposed General Education structure is designed to meet the needs of those students that enter CSUH as the first time freshman students. The specific needs of the transfer students and how they will fit into the proposed structure will be addressed later.

Central features of the proposed G.E. structure are:

Cohorts for first year students. Entering freshmen will take a minimum of 27 units of course work with the same group of students. Students will participate in cohorts in their freshman year. Cohorts are intended to increase both learning and students’ sense of connection to the University.

 regulart assessment f learning and enforcement of knowledge and skills requirements. Assessments at the end of the first year in the knowledge areas and basic subjects will be given.

Possible linked courses in the Sophomore year. Students may be able to take linked courses that will satisfy their requirements for lower-division General Education by the end of their Sophomore year.

Flexible upper division program. The proposed G.E. encourages departments to identify and recommend a list of specific courses for their majors to demonstrate linkages between upper division G.E. and the major.

Freshman Level

Minimum of 32 units for the freshman level distributed as follows:

A. 14 units Basic Skills which includes 8 units Basic Subjects\(^1\): (4 unit course in English composition, _and_ 4 unit course in Oral Communication, linked to the thematic sequence/cluster), _and_ 4 unit course in Quantitative Reasoning, _and_ a minimum of 2 unit course in Information Literacy\(^2\). The prohibition on counting courses taken in the major department for General Education does not apply to these Basic Skills courses.

Note: Students are strongly encouraged to take Quantitative Reasoning and Critical Thinking in the Freshman year.

\(^1\) To the extent possible, linked sections of the Basic Subjects will use topics, texts and assignments from the sequences/cluster. Faculty teaching both the thematic sequences/cluster and the linked Basic Subjects will consult to ensure substantive linkages in content between the sequences/cluster and the linked courses.

\(^2\) Information Literacy course may be linked to the thematic sequences/cluster or taken as a separate course offered by the colleges.
B. 14 units in one knowledge area (Sciences, or Social Sciences, or Humanities or one course each in these three areas) which includes 12 unit, 3-term thematic sequence/cluster\(^3\) coursework and 2 unit activity module\(^4\) (1 unit, for two terms). Freshman clusters must have a strong plan to integrate the three courses.

C. All Freshman Clusters will show high collaboration and be supported by such things as: workshops for instructional faculty with stipend, administrative and clerical support, enhanced teaching units, and promotion-tenure-retention credit.

Sophomore Level

32 units in Sophomore level which is distributed as follows:

A. 24 units in the two knowledge areas (among science, social sciences, and humanities) that have not been taken in the freshman year. Students will choose from a lower-division General Education list of courses. Courses may be linked within knowledge areas (two or three science or two or three humanities or two or three social sciences, across knowledge areas (two or three courses from different knowledge areas) or skills courses linked with knowledge area courses (English 1001 or 1002 or Critical Thinking or Speech or Math/Statistics).

B. 4 units Performing Arts and Activities.

The Lower Division G.E. total number of units: 60 units minimum.

\(^3\) The following applies to all Thematic Sequences/Clusters:

?? 12 units is a minimum requirement for the thematic sequences or course clusters. For example, a sequence/cluster in the Sciences (or in Languages) with lab units offered during one or more terms may be offered for 12 or more units.

?? Thematic sequences/clusters may be created from three courses already offered. In that case, faculty would be expected to develop thematic linkages through topics, texts, assignments, lectures or lab experiences to model for students the integration of knowledge presented in the sequences/cluster. *Courses, however, must be Freshman level classes. Upper division courses, adapted for thematic sequences/clusters, must be revised to be appropriate for first-year college students.*

?? Thematic sequences/clusters may be newly developed course sequences/clusters designed specifically for Freshman General Education.

?? We encourage team-teaching where appropriate and feasible. It is not required.

?? First and second year students who complete a cluster of linked courses in the Humanities, Social Sciences, or Sciences will be allowed to count one course from one cluster for both their General Education Program and their major.

All such clusters of linked courses in lower division General Education will include one course in each of three different departments. 97-98 CIC 9

\(^4\) In Activity Module students will be assigned specific activities connected to course content/assignments which concentrate on developing or honing particular skills. Both general and honors activities will be offered.
Junior-Senior Level
12 units of coursework in upper division Humanities and Social Sciences, and Sciences: Because the latter situation leads to a more integrated baccalaureate degree program, Cal State Hayward invites each major to prepare lists of suggested courses from those approved by the University for G.E. areas C4, D4, and E. These lists are sent to the G.E. Subcommittee of CIC which assembles all of them as part of an advising guide for upper division students. Students are free to select any courses approved by the University for Upper Division G.E., but the guide is very useful for students looking for UDGE courses that relate to and support study in the major field and lead to a more integrated baccalaureate experience. (99-00 CIC 18) The distribution of units is as follows:

A. 4 unit upper-division course in history, literature or philosophy that includes a significant writing component and emphasizes advanced communication and critical thinking skills; and

B. 4 unit upper-division course applying the methodologies or research findings of the social sciences to significant contemporary problems and emphasizing advanced writing and information literacy skills; and

C. 4 unit upper-division course in the sciences that includes numeracy, quantitative analysis, information literacy, and critical thinking skills.

The Upper Division GE total number of units: 12

Additional Requirements
4-unit upper division course with a focus on Lifelong Understanding and development of humans as integrated physiological and psychological entities. May also satisfy one of the Area Requirements (B6, C4, D4) in upper-division General Education.

4 units of Cultural Groups and Women remains as now. The courses in this requirement may be taken simultaneously with other G.E. requirements or as a separate course. Completion of U.S. history, U.S. Constitution and California government Requirement will continue to be met in addition to G.E.

Summary
Minimum 60 units Lower Division G.E. including:
?? 32 units Freshman Level
?? 28 units Sophomore Level

12 units Upper Division G.E. including:
?? 12 units Junior and Senior Level

Total GE: 72 units minimum

Students must have upper-division status (completed 90 units) and have satisfied the University Writing Skills Requirement or passed a second-tier writing skills course before enrolling in Junior level G.E.. Students must also have passed English 1002 and Critical Thinking before enrolling in Junior level G.E..

All upper-division General Education courses must be selected from outside the students' major department but may be used to complete requirements for the major. Departments may take the lead in soliciting and assisting the development of course sequences or clusters which would support students' learning in the major.
PROPOSED CHANGES IN THE CSUH G.E. PATTERN AND CSU G.E. OBJECTIVES (E.O. 595)

This document shows how the proposed G.E. program complies with Executive Order 595 and additional current CSUH G.E. requirements. All G.E. courses are subject to review by the Committee on Instruction and Curriculum and the Academic Senate. All applications for G.E. courses will be reviewed by the G.E. Subcommittee.

LOWER DIVISION – 60 UNITS
(All courses must be lower division)

<table>
<thead>
<tr>
<th>Area</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area A Communication in the English Language</td>
<td>(12 units)</td>
<td></td>
</tr>
</tbody>
</table>
| A1 | Oral communication (4 units)
4-unit oral communication course linked to the thematic sequence/clusters | |
| A2 | Written Communication (4 units)
4-unit English composition course linked to the thematic sequence/cluster | |
| A3 | Critical Thinking (4 units)
4-unit critical thinking course
?? All area A3 courses subject to review by Area A3 Subcommittee of CIC | |
| **Area B Natural Sciences and Mathematics** | (16 units) |
| | 12-unit freshman cluster or sophomore courses on physical and life sciences which must include a minimum of one unit of lab.
4-unit quantitative reasoning course | |
| **Area C Humanities: Fine Arts and Letters** | (12 units) | |
| | 12-unit freshman cluster or sophomore courses on arts and letters. | |
| **Area D Social Sciences** | (12 units) |
| | 12-unit freshman cluster or sophomore courses on at least two social sciences | |
| **Area F Performing Arts and Activities** | (4 units) |
| | 4 units of performing arts and activities courses with major activity component
(see 98-99 CIC 28) | |
| **Area G Electives** | (4 units) |
| | 2-unit activity adjunct to freshman cluster
2-unit information literacy course | |
Approved by the Academic Senate 6-03-03

UPPER DIVISION – 12 UNITS

(All courses must be upper division as must the student)

<table>
<thead>
<tr>
<th>Area</th>
<th>Sciences</th>
<th>(4 units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B6</td>
<td></td>
<td>4-unit upper division science course including numeracy, quantitative analysis, information literacy, and critical thinking skills.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area</th>
<th>Humanities</th>
<th>(4 units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4</td>
<td></td>
<td>4-unit upper division humanities course emphasizing writing and advanced communication/critical thinking skills.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area</th>
<th>Social Sciences</th>
<th>(4 units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D4</td>
<td></td>
<td>4-unit upper division social sciences course emphasizing significant contemporary problems and advanced writing/information literacy skills.</td>
</tr>
</tbody>
</table>

TOTAL UNITS REQUIRED – 72

General Requirements

One course (minimum 3 units) with focus on the contributions to American civilization and knowledge that members of various cultural groups and women have made. Must also satisfy one of the Area Requirements to count in General Education.

?? All courses subject to review by Cultural Groups/Women G.E. Subcommittee of CIC.

4-unit upper division course with a focus on Lifelong Understanding and development of humans as integrated physiological and psychological entities. May also satisfy one of the Area Requirements (B6, C4, D4) in upper-division General Education.

All courses applying for Lifelong Understanding overlay subject to review by subcommittee of CIC

A2, Written Communication, and A3, Critical Thinking, will be prerequisites to upper-division G.E. courses requiring advanced writing.

Courses satisfying code requirements in U.S. history, U.S. Constitution, and California state and local government do not apply to G.E.
Final Report Prepared for the William and Flora Hewlett Foundation

Pathways to Student Success:
The Impact of Learning Communities on the Success of Academically Under-Prepared College Students

Catherine Engstrom
Vincent Tinto

Higher Education
School of Education
350 Huntington Hall
Syracuse University
Syracuse, NY 13244-2340

Excerpted for CSUEB-relevant data
Executive Summary

Pathways to Student Success: The Impact of Learning Communities on the Success of Academically Under-Prepared College Students

On the surface, America’s public commitment to provide access to any individual who seeks a postsecondary education seems to be working. Our higher educational system enjoys one of the highest participation rates in the world. More than 16.3 million students currently enroll in US public and private two and four-year colleges. In the past twenty years, enrollments have grown over 25 percent; the proportion of high school graduates entering college immediately after high school has increased from about 49 percent in 1980 to 66.7 percent in 2004. As enrollments have grown, so too have the number of economically disadvantaged students. But scratch beneath the surface of this apparent achievement and the news about access and opportunity in American higher education is much more complex and a lot less hopeful. Despite gains in access generally, gaps in four-year degree completion between high and low income students has remained largely unchanged, indeed they may have increased somewhat in the past decade. For too many low-income students, the open door of American higher education has been a revolving door.

This is the case in part because large numbers of students, in particular those from low-income and underserved backgrounds are academically under-prepared for college work and are unable, despite the existence of academic support programs, to acquire needed academic skills while enrolled in college. Consequently a good deal of attention is now being paid to the development of more effective forms of academic assistance. One particularly promising effort, the adaptation of learning communities and the collaborative pedagogy that underlies, is the focus of this study.

Through an extensive review process, we selected nineteen institutions, thirteen two-year and six four-year, that have developed what an advisory board judged to be particularly effective learning community programs for academically under-prepared students. In each of the nineteen institutions we employed a variant of the Community College of Student Engagement to survey students in the learning community program.
and a comparison sample of similar students not in the program. We then employed the National Student Clearinghouse data system to ascertain student persistence to the next year of college. We also carried out case studies for a sub-sample of five institutions, three of which were located in California; Cerritos College, DeAnza College, and California State University, East Bay. In addition to observations, we conducted, over a three-year span, approximately 350 interviews, either individually (250) or in focus group sessions (92) with 182 individuals. We did in order to gain important insights about how students made meaning of the learning community experience and navigated the challenges and opportunities in college. Together our methods were designed not only to determine whether the programs were effective in enhancing the persistence of academically under-prepared students, but also why they were.

Our research yielded a number of findings, several of which speak directly to the goals of the project.

- **Learning communities and use of collaborative pedagogies that require students to learn together in a coherent interdependent manner leads to higher levels of academic and social engagement, greater rates of course completion, and higher rates of persistence.**

- **Pedagogy matters.** Active learning pedagogies, high expectations, fluid teacher-learner roles, and student validation

- **Curricular linkages matter.** The linking of basic skill courses to content, general education courses results in deeper, more integrated learning experiences where students learn content while acquiring basic skills. They increased student interest and engagement and were perceived by students to be a more efficient and easier way to learn than is the case for stand-alone classes. This was particularly true of the linking of courses to new student seminars, study groups, and tutoring services as they enabled students to acquire skills, habits, and competencies critical to navigating college and promoting their ongoing academic success.

- **Support matters.** The linking up of classroom activities to support services on campus serves as a critical conduit to other support services that students might not otherwise know about or access.
• **People matter.** Program success lies as much in program culture, that is in the values and norms that inform program operation, as it does in the curriculum and pedagogies the program employs.

Learning community participation was seen by students as transformative. Many students who had not taken their studies seriously during high school and/or had little confidence in their ability to succeed in college developed a strong sense of purpose and confidence after one term enrolled in a curricular learning community. They blossomed in an environment that recognize their talents and took them seriously as scholars and college students. ESL students as well spoke about how learning communities enhanced their learning. In addition, these programs were critical to their enhanced proficiency in speaking, writing, and reading English, leading to an increased confidence in their ability to succeed in college.

Students described their learning community experience as having laid a solid foundation that set them in the “right” direction. They spoke of having developed a keen understanding of their needs and responsibilities as learners and college students and saw their basic skills classes as laying a solid foundation to build upon in required general education courses. It was noteworthy that they did not perceive themselves as “developmental,” “remedial” or less qualified to handle the demands of college. Rather they felt as if they now belonged in college and were committed to pursue their academic goals and graduate from college.

Nevertheless, while confident of their academic abilities after progressing through the learning community program, they identified other non-academic factors that promoted or impeded their progress and ability to graduate. These areas included:

• **Academic Advising:** Students needed a counselor or advisor who knew them personally and invested in a sustained way to their success. Typically, students got access to a committed advising relationship through formal programs such as EOP, Trio Programs, Excel, and Project Hope. If students did not have an advisor who they felt knew and saw them on a regular basis, they typically did not seek out advising.
• **Relevant Curricula and Pedagogy:** The learning community experience helped students understand how they learned best. They continued to value active learning pedagogies that emphasized group work, personal connections to faculty, and efforts to link the content with relevant life experiences and were frustrated with and disengaged from "talking head" professors and material and assignments that assumed an American, euro-centric perspective.

• **Immersion into College Life:** Students learned to value the importance of being on campus beyond the required class periods.

• **Family Support:** Students who had school-aged or older children found their kids to be invaluable supports. Students who lived at home with their families did not always see their family as supports and even described them as barriers to their persistence and success. Family members - who often did not go college - were proud of their sons or daughters for attending college but were often frustrated by the hours student engagement required and their changing career plans.

• **Proficiency in Mathematics:** Despite student's commitment to succeed, their lack of math proficiency was perceived by students as a major obstacle to their continued persistence in college.

• **Access to Required Classes:** Student progress was often hindered by being closed out of required courses. A key advantage of Cal State East Bay's structured general education learning community program was that students were guaranteed access to required courses in appropriate sequences. Students who could not enroll into needed courses often dropped out (even if temporarily), took a course or two (and sometimes transferred) to another community college, and/or took required courses in the summer.

• **Finances:** Throughout our study, a major concern of students was how they would finance both their courses and required books. Lack of financial resources resulted in some students taking a reduced load, stopping out for a while, and/or borrowing or not using textbooks for the course.

• **Impacted Nursing Programs:** Students entered college confident about their ability to fulfill the pre-requisite nursing requirements and to gain entry into a nursing program.
They understood nursing programs were impacted but were naively optimistic that they would be successful in gaining admission.

- Reflective Activities. Students shared that involvement in this study was an invaluable reflective tool for them to examine their progress on educational goals, ways in which they had developed, and what they had learned about themselves over the college years. They felt special and empowered to be sought out for input and appreciated the opportunity to share their experiences, particularly knowing that others might benefit from what they learned.

... Some students at Cal State East Bay are looking towards fulfilling a handful of remaining graduation requirements; others are getting immersed in their major and upper division courses or considering a change in major.

In conclusion our results argue that to address the success of academically underprepared students who are disproportionately of low-income and underserved backgrounds, colleges, and universities must stop tinkering at the margins of institutional life, stop the tendency to take an “add-on” approach to institutional innovation, and adopt efforts that restructure the learning environments in which we ask students to learn. It tells us that [we] must rid ourselves of those values that see academically under-prepared students as somehow deficient. As one student noted “We are not under-developed; we are just not prepared.” At the same time, we must recognize that access without appropriate support is not opportunity and that student success does not arise by chance. It requires institutions to be intentional, structured, and proactive in their support for students.

Learning Community Characteristics

Thematic integration

Typically, learning communities are organized around a central theme or problem that links the courses. The point of doing so is to enable students to make explicit connections between the skills and knowledge learned in the linked courses (e.g. the application of the learning of mathematics in one course to the study of engineering or science in another).
Faculty collaboration

Learning communities require faculty to collaborate in a variety of ways. Faculty in linked courses typically plan their assignments so that the activities of one complement that of the other. *(Summer workshops at CSUEB for cluster faculty provide the vehicle for initial collaboration and planning. There currently is no institutional support beyond initial planning.)* The point of such collaboration is to ensure that the sharing of courses provides for a coherent educational experience, one that is intentionally structured to promote student education.

Other Commonalities

Clearly there is no one type of learning community; there are many. But nearly all have two characteristics in common. **One characteristic is shared knowledge.** By organizing the linked courses around a theme or problem, learning communities seek to construct a coherent educational experience that is not just an unconnected array of courses in, say, composition, calculus, modern history, Spanish, and geology. In this way, students come to share, as a community of learners, a body of knowledge that is itself connected. **The other characteristic is shared knowing.** By enrolling in several classes together, students come not only to know each other quickly and fairly intimately in a way that is part and parcel of their academic experience, but also to share the experience of trying to learn the material of the shared courses.

Study Methodology

To address the shortcomings of prior research, we carried out a systematic, multi-institution, longitudinal study of the impact of learning communities upon the success of under-prepared college students. We employed both quantitative longitudinal survey and qualitative case study and interview methods. We utilized the former in order to ascertain to what degree, if at all, participation in a learning community enhanced student success and the latter to shed light on why it is that such communities enhance student success, should they do so. Though methodologically distinct, these methodologies were employed in parallel so as to produce a fuller, richer, and more complex picture not only of the success of students in those communities, but also of the experiences that help shape that success.
Survey results (I have included little of the data since CSUEB has no comparison group against which to measure difference. None the less, the summary data about engagement and persistence are relevant.)

- It is evident in both two and four-year institutions that students in learning communities were more involved in classroom activities and with their classmates than are comparison group students.
- Nationally, learning communities have significantly higher rates of persistence than do the comparison group students. . . . in four-year institutions the difference is 9.6% (80.6% verses 71.0%).
- In California’s four-year institutions, the differences between learning community and comparison group students’ one-year persistence are even more profound. The difference is 26.1% (89.3% verses 57.8%).

Qualitative data:

1. The Learning Community Experience: Building a Positive Learning Environment

 Students shared that they were engaged in safe, stimulating, supportive learning environments due to relationships and sense of communities that emerged from learning community experiences. As a result, students felt comfortable actively participating and speaking up in class, behaviors they cited that enhanced their learning.

 - The study identified four, major, inter-related factors that created this safe, engaging learning environment. These factors provided students with a solid foundation for future academic success.
 - Faculty employed key teaching strategies (active learning pedagogies, high expectations, fluid teacher-learner roles, and student validation) that promoted student success and a sense of belonging.
 - Peers were major sources of knowledge, support, and influence in developing routine habits and behaviors important to students’ success and immersion into college.
Participation in linked, integrated courses promoted deeper learning experiences, increased student interest and engagement, and was perceived to be more efficient and easier than stand-alone classes.

The learning community taught skills, habits, and competencies critical to navigating college and promoting their ongoing academic success.

- Many students entered college feeling they didn’t belong there.
 - For native English speaking students, prior high school experiences seemed irrelevant and left them feeling disconnected, invalidated as knowers, and lacking any motivation to learn or excel.
 - For recent immigrant or non-native English speaking students, their lack of confidence in their academic abilities, self-esteem, and identity as college students were directly tied to their ability to speak, read, and write English. Even if they came from strong prior educational experiences from their country, their identity as college students in the United States was primarily shaped through their perceived proficiency in the English language.
 - Students expressed that a key condition for learning was participation in an environment where [they] knew and trusted each other.

- Faculty play a key role in creating the “safe” environment
 - implementing active learning pedagogies;
 - engaging in and modeling fluid teacher-learner roles; and
 - caring about students and believing in students’ ability to be successful (including advocating and having high expectations for students).

- Fellow students play a key role in learning
 - Peers in the cluster often created a shared sense of purpose and serious atmosphere for studying.
 - Students consistently emphasized that they had to get to know their peers before they would seek them out for support in class.
 - Students learned from the opportunity to help or teach their peers.
 - Students valued the learning that came from listening to peers’ diverse perspectives in class.
• The learning community structure that encouraged them to get to know each other and to see each other regularly also facilitated student efforts to keep each other motivated, focused, and “on task.”

• **Faculty foster deep learning through integrated, connected learning**

 - One of the most important ways in which faculty also promoted deep learning experiences for students was by working together with the other learning community faculty colleagues to provide an integrated, coherent curriculum.
 - Students perceived multiple ways in which a connected curriculum supported learning
 - Coordinated assignments led to deeper learning.
 - *Linked curriculum* increased engagement with course materials.
 - *Connected curriculum* enhanced their motivation to learn.
 - Learning in an integrated fashion was also easier and a more efficient use of their time.

 - Students thought it just made more sense to integrate the courses because they were able to revisit the material more regularly and they had more assignments that built upon the knowledge they had gained or were expected to learn.

 - Students also shared how once they completed the cluster experience, they still made efforts analyze ways in which the courses inter-related. They sought to make these interdisciplinary links because it enabled them to learn the required material more deeply and more easily.

2. **Learning to succeed: Importance of new student seminars, tutoring, and study groups**

 The learning community environment emphasized the use of informal (e.g. study groups) and formal (e.g. tutoring, new student seminars) strategies. The learning community initiatives across these campuses provided a conduit to an array of campus support services, typically through the new student seminar or counselor assigned to the learning community. In addition, these programs and learning community professors reinforced critical habits and skills essential to their success, particularly incorporating
tutoring and study groups into their weekly schedules and routines. These activities all contributed to engaging students more deeply into their college pursuits, spending more hours studying, and taking their studies more seriously. In this section, we focus on the influence of a) linked new student seminars; and b) tutoring, and study groups on promoting student identities as serious and successful college students.

- **Linked New Student Seminars (General Studies at CSUEB)**

 The new student seminars clearly taught students some of the “cultural capital” required to understand and navigate the college system. They developed strategies and a web of resources for understanding what courses they needed to take and why. The instructors became advisors, confidants, and their biggest cheerleaders. The experience contributed to their sense of validation and college student identity. Finally, these courses taught students critical time management and study skills.

- **Tutoring Services**

 Tutoring was another vehicle for not only enhancing students’ understanding of the required course material, but also keeping them on campus, immersed in their studies and spending “time on task”, and developing their college-student identities.

- **Study Groups**

 Our interview data are rich with countless descriptions of the experience and benefits of study group participation. (The scheduling of study groups was easier at Cal State East Bay since students all were in the same classes together and had similar breaks in the day.)

- **CSUEB Clusters**

 For students at CSEB [sic] who were required to take clusters, many of them initially resented the fixed set of classes and schedules over two years. However, students came to value the many benefits from the cluster system, benefits they did not recognize when we first interviewed.

 The clusters (CSUEB) worked to move students through the college requirements in a systematic, intentional way so students have access to key courses (and are
not closed out), even when initially students did not recognize these nuances. This approach is particularly beneficial to first-generation students who often do not know how to organize general education class requirements, major requirements, or basic skills classes so they can stay on track to graduate in four years.

3. Learning Communities and Basic Skills (Remedial) Courses

We asked students about the benefits of the required basic skills classes. Many native English-speaking students initially were frustrated to be placed in courses that “didn’t count” for graduation requirements. (Note, ESL students were open and actively seeking classes that would increase their confidence in speaking, reading, and writing English.)

- We heard repeatedly from students at various institutions that the faculty teaching these basic skills courses framed their course as a wonderful opportunity to develop skills and knowledge that would serve them well in college.
- These experiences were empowering and integral to shaping their college student identities. Some students, such as Anna from CSEB [sic], perceived that the basic skills classes enabled them to be more successful in baccalaureate English classes than their peers who did not place into basic skills courses.

4. Learning communities promoted student identities as learners and college students

Students’ views highlighted how students’ sense of self as learners and confidence in their abilities to succeed and to belong at college were intricately tied to their learning community experiences. When we asked students what they had learned from the learning community, they clearly had become more aware of their needs and responsibilities as learners and as college students. They felt that they belonged IN college, and particularly to that institution.

- Students reported that their commitment and motivation to pursue their studies increased because of their greater attachment to the institution, the validation they had received, and the knowledge they had gained to navigate college.
- Several of the students’ comments reflected how over time, their increased sense of confidence to participate and belief in their abilities were tied to their self-esteem.
ESL students shared that language proficiency was the key measure of their success in college, and in turn, motivation to continue to pursue their studies and development of their self-esteem.

Factors Influencing Continued Success and Persistence

Students that we interviewed over a two to three year period were able to identify the changing, diverse issues, opportunities, and challenges they faced and ways in which they were negotiated. In this section, we discuss those that students perceived to be salient (positively and negatively) to the ongoing persistence, success, and self-esteem. These areas include: a) advising* b) relevant curricula and pedagogy* c) immersion into the college environment; d) finances; e) family support and understanding; f) math*; g) availability of required classes*; h) impacted nursing programs*; and i) participation in the research study. (*topics addressed below)

- Sustained, ongoing advising relationships
 - For many students, one of the perceived strengths of the learning community experience was the structured, intentional advising that was part of the LC programs, particularly at Cerritos and CSEB.
 - Advising clearly became a key influence in students’ continued success (or lack of). Students identified the advising and support programs such as Equal Opportunity Program (EOP) (found at CSEB and both community colleges), Exel (at CSUEB), . . . as central to their continued success. The interview data were flooded with testimonials about the importance of student engagement in sustained relationships with one or two assigned advisors throughout their college years.
 - A key factor to students’ valuing and accessing advising was if the advisor knew them personally.
 - Additional concrete benefits from personalized advising
 - expedient feedback
 - mentoring
 - consideration of
- Alternative majors in case she was denied admission to her major of choice,
- Scholarships to finance her education, and
- Involvement in valuable co-curricular experiences.
- Access to tutoring.

- Students consistently shared the need for more extended, in-depth conversations that they believe cannot be accommodated in typical advising systems.

- **Importance of relevant curricula and pedagogy**
 Students were quite articulate about teaching-learning strategies that facilitated their learning and those that were not effective. They were quite descriptive about pedagogy that responded to their learning styles and those practices that were inhibiting.

- They learn best through
 - Small classes,
 - Activities that connect theory to real life experiences and enable them to get actively engaged,
 - Assignments that help them apply what they learn in class,
 - Connect to their life experiences,
 - Explore their career interests through hands-on experiences such as service-learning and internships.

- Students also became harsh critics of faculty who failed to create these conditions for active learning and failed to validate their knowledge (e.g. "talking heads", disengaged lectures).

- Students gravitated toward and appreciated classes that promoted small group discussions, connections with faculty, and environments in which their views matter.

- **Lack of success in math often got in the way of student progress and retention.**

- **Access to required classes:** Students participating in CSEB clusters emphasized the advantages of getting access to required courses for general education requirements and major courses of study.
• **Impacted Nursing programs**
 - At CSUEB, the challenge is to help students explore alternatives to nursing for the many students who do not qualify for or are not admitted into our impacted nursing program.
 - We address these issues explicitly in the General Studies Freshman Seminars throughout the year with the pre-nursing students.

Conclusions and Implications

The quantitative data of this study provides evidence that there are significant differences in the experiences, perceptions, and, in turn persistence of academically under-prepared students who participate in a learning community versus those who do not. The qualitative analyses provide insight into why these differences unfold and how students make meaning of their integrated, linked learning community curricula. Continued interviews with students after their participation in the learning community program elicited important findings that have implications for higher education administrators, faculty, and policy makers at the local, state, and national levels. We highlight a few major recommendations that emerge from the data analyses.

1. Increase the number and variety of learning community programs for students taking basic skills and/or ESL non-credit bearing courses, particularly at community colleges.

2. Develop learning community initiatives that include math, reading, and writing and extend beyond a semester or quarter long experience. Efforts should be made to assign the same professors through the sequence of linked courses. Math is a key obstacle to student progress. More intentional efforts are needed to engage students and teach them in ways responsive to students’ learning styles. Students at CSEB argued that they learned more in basic skills classes when there was continuity with the professor across English classes.

3. **Expand formalized advising and academic support service programs.** We argue that any student who enters college with a requirement to take one or more basic skills course and is a first generation college student should have access and be encouraged to participate in a formal academic support program with an assigned advisor. Ideally, it is an advisor connected to a learning community experience. *Minimally, provide personalized advising in the first and third year.*
4. Introduce a series of interventions, including dedicated advisors, to work with prospective nursing students at the beginning of their college years.

5. Faculty development programs on college campuses must focus on teaching active learning pedagogies and strategies for introducing and rewarding student participation in study groups and tutoring services.

6. Aggressively market the work-study or on-campus jobs available with ESL students and students taking basis skills courses. Consider using learning community classes to talk about the benefits of on-campus work and how to apply. Push co-curricular involvement as they finish their first year (as opposed to the beginning of their college experience).

7. Study the impact of financial aid policies and availability of classes in terms of student persistence and graduation.

8. Access without support is not opportunity. For too many students, especially those from low-income backgrounds and who are academically under-prepared, the open door to higher education is a revolving door. Without appropriate support too many are unsuccessful. Support requires more than the mere provision of tutoring, basic skills course, and learning centers. It calls for the establishment of conditions in which we place students that are themselves conducive of student success. Although learning communities are not the only possible vehicle to establish those conditions, our project documents that they are surely a viable one. The creation of such communities requires, however, intentional institutional action and the collaborative efforts of faculty, staff, and administrators across campus. Simply put student success does not arise by chance. Nor do effective learning communities for academically under-prepared students.
Appendix

“E”
Oral Communication (A1)
(Under consideration of Academic Senate)

Students who have completed lower division general education requirements should be grounded in the rhetorical principles that govern public presentations and the listening skills required for effective message reception. These principles are fundamental to sound reasoning and clear expression. The principles foster open-mindedness and information competence combined with critical thinking and analytical skills, and an awareness of and ability to adapt to audience, context, and purpose.

Students are expected, at the end of their lower-division general education requirements, to demonstrate their oral communication presentation competence by

1. choosing and narrowing a topic appropriately for a specific audience and occasion;
2. communicating the thesis/specific purpose in a manner appropriate for the audience and the occasion;
3. providing appropriate supporting material based on the audience and occasion and using appropriate technology (PowerPoint, demonstration, etc.) to present the material to the audience;
4. presenting logically sound, non-fallacious arguments;
5. recognizing and addressing audience viewpoints appropriately;
6. presenting ideas organized in a fashion appropriate to topic, audience, occasion, and purpose;
7. using language, vocal variety, and physical behaviors that are appropriate to the audience, occasion, and purpose and maintain interest and support the verbal message.

Listening

At the end of lower division general education, students should be able to demonstrate their listening competence by

1. recognizing that listening as an interaction among the speaker, message, and audience;
2. understanding the public or private context in which the interaction occurs;
3. engaging with the ideas, the supporting details, and the relationships among ideas;
4. attending to messages with an open mind;
5. questioning speakers and messages;
6. evaluating messages using criteria appropriate to the context.
Lower Division GE Written Communication Outcomes (A2)

Students who have completed general education requirements should be grounded in the rhetorical principles that govern reading and writing. These principles are fundamental to logical thinking and clear expression. For reading, they presume open-mindedness combined with critical thinking and analytical skills; and for writing, they presume an awareness of audience, context, and purpose.

Reading. When reading a text, students are expected to:

1. Read for the meaning of a text by determining its purpose, intended audience, and significance;
2. Understand the historical context of the text;
3. Engage with and offer thoughtful responses to ideas in the text;
4. Question authors and texts;
5. Evaluate the text according to criteria appropriate to the context.

Writing. When writing a text, students are expected to:

1. Realize that writing is a recursive process involving prewriting and revision;
2. Compose an essay with a clear thesis and evidence to support the thesis;
3. Understand the role of logically sequenced and fully developed paragraphs;
4. Demonstrate awareness of other points of view and how to address them;
5. Incorporate research into an essay, including summarizing, paraphrasing, and properly quoting and citing material from other sources;
6. Know the ethics of academic writing and of accuracy in the use of evidence;
7. Organize an essay in light of audience expectations;
8. Present material logically and without fallacies;
9. Present material in language appropriate for the context, usually in standard written English that is grammatically and syntactically correct;
10. Be familiar with strategies for timed writing;
11. Develop and have confidence in one's own ideas.
Critical Thinking – (A3)

The purpose of our critical thinking program is to develop clarity and rigor in reasoning and its presentation, and the ability to understand, represent, and evaluate the presentations of reasoning made by others. We pursue these goals by means of training in the following areas:

Deductive reasoning:
1. Demonstrate the ability to use rules and strategies for deriving conclusions;
2. Demonstrate the ability to use rules and strategies for testing for validity;
3. Demonstrate an understanding of the logical features of words such as “all,” “or,” “not;”
4. Demonstrate the ability to translate into logical structure natural language reasoning.

Inductive reasoning:
1. Demonstrate the ability to evaluate statistical reasoning;
2. Demonstrate an understanding of correlation including its limitation in causal claims;
3. Demonstrate the methods of testing hypotheses using deductive reasoning;
4. Demonstrate understanding of the complexity of causal claims.

Analysis of natural language reasoning:
1. Successfully identify premises, intermediate and final conclusions;
2. Distinguish between independent and interdependent reasoning types;
3. Identify suppressed premises;
4. Identify unexpressed final and intermediate conclusions.

Fallacious reasoning:
Demonstrate the ability to identify steps in reasoning that are not cogent yet appear so.

Presentation of reasoning:
Present orally or in writing well reasoned cases in support of a proposition or in refutation of another’s position.

Critical thinking competency requires that the student demonstrate proficiency in four of the five areas described above.
Cultural Groups and Women (overlay requirement)

Student Learning Outcomes

Courses satisfying this requirement must lead to all of the following four outcomes.

1. Knowledge of and respect for one or more of the groups and their contributions to U.S. society, including but not limited to three or more of the following aspects: historical, linguistic, cultural, economic, political, literary.
2. Ability to analyze critically the relationships between the groups and the dominant society, among the groups themselves, and among members of the same group.
3. Working knowledge of the groups' histories and contemporary experiences as subjects (as opposed to objects or victims) and of their voices and expressions, including, but not limited to, oral traditions, writings, and art forms.
4. Comprehension of the origins and functions of discrimination, exploitation, and oppression of the groups, both historically and in the present, and ability to identify various patterns of discrimination.

Additional Criterion
The course as a whole (not a percentage or "more than half") must focus on one or more of the identified groups in the U.S. to be approved.
Lower Division Natural Science Learning Outcomes (B1, 2, 3, and 5)

The goal of lower division general education in the natural sciences is to gain basic knowledge and learn key principles in the life and physical sciences as essential for an informed citizenry. In addition, students should recognize the experimental and empirical methodologies characteristic of science and understand the modern methods and tools used in scientific inquiry. At least one of the courses must have a laboratory.

Physical Science (B1)
1. Students should be able to demonstrate broad science content knowledge in the physical sciences such as the nature and structure of matter, Earth’s place in the Universe, or the conservation of energy and matter.
2. Students should be able to demonstrate the application of quantitative skills (such as statistics, mathematics and the interpretation of numerical graphical data) to physical science problems.
3. Students should be able to demonstrate a general understanding of the nature of science, the methods applied in scientific investigations, and the value of those methods in developing a rigorous understanding of the physical world. Students should be able to identify the difference between science and other fields of knowledge. Students should be able to distinguish science from pseudoscience.

Life Science (B2)
1. Students should be able to demonstrate broad science content knowledge in the life sciences (such as cellular structure, the diversity and classification of life, or biological evolution) and be able to describe fundamental concepts in the life sciences that distinguish them from the physical sciences.
2. Students should be able to demonstrate the application of quantitative skills (such as statistics, mathematics, the interpretation of graphical data, etc.) to life science problems.
3. Students should be able to demonstrate a general understanding of the nature of science, the methods applied in scientific investigations, and the value of those methods in developing a rigorous understanding of the physical world. Students should be able to identify the difference between science and other fields of knowledge. Students should be able to distinguish science from pseudoscience.

Science Elective (B3)
1. Students should be able to demonstrate a broad science content knowledge in the physical, life, or interdisciplinary sciences.
2. Students should be able to demonstrate the application of quantitative skills (such as statistics, mathematics, the interpretation of graphical data, etc.) to scientific problems.
3. Students should be able to demonstrate a general understanding of the nature of science, the methods applied in scientific investigations, and the value of those methods in developing a rigorous understanding of the physical world. Students should be able to identify the difference between science and other fields of knowledge. Students should be able to distinguish science from pseudoscience.

Science Laboratory (B3)
Students should be able to demonstrate hands-on skills applying the specialized methods and tools of scientific inquiry (such as collecting, analyzing, and interpreting the data, presenting the findings, and using the information to answer questions).
Upper Division General Education Science (B6)
Student Learning Outcomes

Upper division physical, life, or interdisciplinary science GE courses build upon scientific principles and quantitative skills gained in lower division science and quantitative reasoning courses. Students must complete their lower division B1-5 requirements prior to taking their B6 course. Students are strongly encouraged to take any lab associated with the upper division course.

Upon completion of the upper division science course, students will be able to

1. demonstrate advanced and/or focused science content knowledge in a specific scientific field using appropriate vocabulary and referencing appropriate concepts (such as models, uncertainties, hypotheses, theories, and technologies);

2. apply advanced quantitative skills (such as statistics, algebraic solutions, interpretation of graphical data) to scientific problems;

3. demonstrate understanding of the nature of science and scientific inquiry and the experimental and empirical methodologies utilized in science to investigate a scientific question or issue;

4. critically analyze scientific claims and data;

5. apply science content knowledge to contemporary scientific issues (e.g. global warming) and technologies (e.g. cloning), where appropriate.
Quantitative Reasoning Learning Outcomes (B4)

Goal: Students will demonstrate their ability, in homework and tests, to use college-level mathematical concepts and methods to understand, analyze, and explain issues in quantitative terms.

At the end of general education, students are expected to:

Quantitative Literacy.

1. **Know formal** mathematical concepts and formulae.
2. **Find sources** for key mathematical ideas from the course.

Numeracy Skills (Reasoning).

1. **Manipulate and use theories;**
2. **Graphically display and interpret** quantitative results;
3. **Perform basic arithmetic skills.**

Problem Solving (Thinking).

1. **Identify and analyze** real or potential problems,
2. **Apply** appropriate quantitative theories,
3. **Evaluate** appropriate quantitative measures,
4. **Explain** or discuss results in quantitative terms.
Learning Outcomes for Humanities

Lower division outcomes

Fine Arts: Courses in the Fine Arts examine significant artistic expressions of the creative intellect. Courses meeting this requirement have as their major component the integration of evaluative and descriptive aspects of the history, theory, aesthetics, and criticism of different works, forms, styles, and schools of art.

Letters: Courses in Letters examine significant written and oral texts of the creative intellect. The major goals are: (a) to teach the critical examination of ideas and theories through the use of historical, linguistic, literary, philosophical, and rhetorical approaches and methods; and (b) to encourage understanding of enduring human concerns and the intellectual and cultural traditions within which they arise.

Humanities courses in the lower-division general education program should lead to the four Student Learning Outcomes (SLOs) listed below.

1. Students will demonstrate through oral and written works how foundational works in the humanities illuminate enduring human concerns and the intellectual and cultural traditions within which these concerns arise, including both classical and contemporary artists and theorists.

2. Students will demonstrate a developing understanding of how historical and cultural contexts, individual works, and the development of humanities over time, interact.

3. Through oral and written works, students will demonstrate their ability to critically employ concepts, theories, and methods of analysis used in the humanities to interpret and evaluate enduring human concerns.

4. Students will critically reflect on the formation of human goals and values, and will articulate an understanding of the creativity reflected in works of the humanities that influenced the formation of those values.
Upper Division Humanities (C4)

Humanities courses in the upper-division general education program are 4-unit upper division courses in history, literature, or philosophy that emphasize an advanced writing component and include significant oral communication or manual communication (sign language) and advanced critical thinking skills.

Humanities courses in the upper-division general education should enable students to master the four Student Learning Outcomes (SLOs) listed for lower-division general education humanities. In addition, after completing the upper-division humanities courses, students will:

1. Demonstrate an understanding of and ability to apply the principles, methodologies, value systems, and thought processes employed in human inquiries.

2. Demonstrate in their oral and written work an understanding of the cultural endeavors and legacies of human civilization.

3. Be able to discuss, deliberate, and write about opposing viewpoints in an insightful and logical manner. Be able to present an opposing side fairly and to criticize the argument rather than attacking the person.

4. Demonstrate a developing intellectual curiosity and a habit of lifelong learning, through choice of research topics, the number and quality of questions asked in class, the application of course concepts or themes to lived experiences or world events, or through other similar means.

5. Demonstrate the potential for participating in and contributing to a democratic society as an informed, engaged, and reflective citizen.
Upper Division Social Science
GE Learning Outcomes

Over-all Goal: Courses meeting this requirement must apply the research findings of the social sciences to significant contemporary problems and emphasize advanced writing and information literacy skills.

1. Demonstrate an understanding of and ability to accurately apply disciplinary concepts of the social or behavioral sciences to the study of human behavior, individually and in society:
 a. Explain and use at least two standard or basic theories and models
 b. Define and use key disciplinary terms
 c. Explain and critique professional applications of disciplinary concepts

2. Demonstrate an understanding of and the ability to effectively conduct or plan research using an inquiry method of the social or behavioral sciences:
 a. Identify key research issues and conduct an appropriate literature review
 b. Write research-based hypotheses or research questions
 c. Collect data or use existing data to address important social issues
 d. Analyze data or describe how data should be analyzed

3. Explain in writing, using examples, how human diversity and the diversity of human societies influence our understanding of individual and collective human behavior.

4. Develop advanced skills in oral and written argument in the social or behavioral sciences. (Possible areas include: biomedical and health issues, socio-economic class, crime, discrimination, education, energy, environment, gender, global economy, immigration, military intervention abroad, poverty, race, technology.)
This program review is focused on the General Education Curriculum and First Year Program offered at California State University East Bay (CSUEB will be used to identify the University in the present and in years prior to the University name change). A variety of source materials contributed to information gathering about the program, including: an assessment report made available by the Director of General Education and First Year Programs prior to the site visit; a full day site visit on April 20, 2007 during which time I met with campus faculty, staff, students, and administrators involved in the program; a review of the CSUEB website and other program promotional materials. Further, I served as the Director of the MUSE Program and Associate Dean for First Year Experience in the Office of Undergraduate Studies at San José State University from 2001-2007. Over a period of several years I participated with CSUEB, other CSU institutions, and institutions across the country to design and study the first year experience within and across our institutions. My recommendations and directions described below are based upon these observations.

In response to a previous WASC review and to meet the general education breadth requirements of the California State University system, CSUEB reconceptualized its general education program, and subsequently implemented mandatory freshmen and sophomore learning communities called General Education Clusters in 1998. The sophomore clusters were abandoned in 2004 but may in fact be reinstated as an option for sophomores next fall. Approximately 900 first time freshman entered CSUEB in fall 2006. They represented about 35% of the entering class which has a significantly larger transfer representation (n=1650 or ≈65%). At CSUEB freshmen are younger (mean freshmen age=18 years) than most of incoming students (mean transfer age=26 years) (http://www.csueastbay.edu/ira/factbook/firstTimeStudents.html).

The First Year Program at CSUEB focuses on integrating students into the university by linking core general education courses across themes and creating small learning communities in a large urban institution. The transition from high school to college can leave a student feeling either integrated or alienated from their environment and contributes to high attrition rates between the first and second year of college. Good first year programs coalesce all components of the campus such as the knowledge and skills of professionals from academic affairs, student affairs, and enrollment management. They receive good institutional support because the program is highly valued. Students receive lifelong learning skills that take place in the classroom, the lab, the library, the theatre, and on athletic fields. Skills gained in the first year can help
students to be more prepared for the coursework in the major and more engaged in the institution as students and alumni.

Freshmen at CSUEB are not unlike many students across the nation where large numbers require remediation in math, written English, information competency, and they generally lack basic skills for success in a university such as time management and study skills. The CSUEB General Education Clusters are specifically designed to assist students' academic and social integration into the university. Across the first year, three general education courses frame the cluster from a different disciplinary perspective and thus integrate information. The General Education Cluster helps students meet general education breadth requirements of the CSU system in a systematic and integrated program of study. Clusters are also linked to other general education courses in writing (appropriate for student developmental levels and therefore may be a remedial course that does not satisfy general education), an oral communication course, and an information competency course. A biology sequence for science majors serves as an alternative model to the interdisciplinary cluster sequence in that all courses in the sequence lead to a major in biology and count toward general education, prerequisite, and major requirements giving students a strong start on their program of study. Biology clusters mix freshman students with other students and contain approximately 90 students per course of which freshman account for about one third; one lab section for the biology cluster is mostly limited to freshmen. If adequate resources can be made available the university may consider smaller sections for freshmen in the biology and other science clusters. The impact of class size in the biology cluster and the smaller cluster courses should be examined further. Smaller classes allow faculty to successfully implement active learning strategies and to get to know their students which is severely limited in sections with 90 students.

In addition to the cluster and its associated relations a General Studies Seminar with approximately 30 students is also linked to the cluster in fall, winter, and spring quarters. In the General Studies course students are exposed to information and skills such as note taking, time management, and studying as well as orientation to the campus. Students reported: the General Studies and Cluster program make CSUEB like a little community; the professors were good and there was an easier transition to the university; it was easier to make and keep friends across several years at the university. One student reported that he originally planned to leave the university but he decided to stay because of his attachment to the cluster; however, another student who arrived at CSUEB with good basic skills felt that the general studies seminar was a waste of time. This latter sentiment was expressed by students currently enrolled in the General Studies Seminar; however, these data should be viewed with caution as first year students do not have adequate distance to evaluate the depth and impact of their first year of university level work. Perhaps the General Education Program Committee should consider providing alternative pathways for completing the GS requirement, e.g., sections in winter and spring for honors projects, service learning, and leadership that would accommodate students' differences while still keeping clusters together.
Students suggested that more information about the General Education Clusters is needed before and during orientation. Resources for developing and printing good promotional materials might include a brochure explaining the First Year Program, and that clearly delineates the complex selection of a cluster for prospective students and their families. The website can also be evaluated and improved. The First Year Program is a gem at CSUEB and should be marketed by the University as such.

For the cluster concept to continue to work effectively institutional and faculty support are required. Faculty involved in First Year Programs must commit to student connections beyond the regular classroom that continue through graduation and beyond. Also, to most effectively implement the General Education Cluster faculty must work together to integrate knowledge from across the disciplines and within their courses. Incentives are provided to faculty to design clusters in the first year but they do not continue. Additional incentives may involve faculty in redesigning clusters based upon assessment of the student learning outcomes. Furthermore faculty in tenure track lines can be recognized for PTR evaluation; however this service must be institutionally valued.

The CSUEB General Education Cluster freshman intervention is nationally recognized for drawing together the principles known to affect freshman retention and academic success through the implementation of learning communities. Administrators and faculty at CSUEB need to champion this highly effective approach to provide first time freshmen the pathway to become liberally educated persons. Contributing to general education outcomes is the responsibility of all CSUEB Deans and Department Chairs who need to embrace the program, promote it, and assign it to tenure track faculty. Deans and Department Chairs need to value faculty contributions to general education and provide them different rewards. Short term lecturers should be kept to a minimum and not be used to fill cluster courses at the last minute as this undermines the integrative nature of the clusters. Strategies for minimizing class size must be implemented so that effective discussion based, active participation, and writing requirements can be incorporated as it was reported that some clusters enroll 45 students, excepting the science sequences that enroll 90 students.

The General Education Program at CSUEB is embedded throughout the recruitment and orientation activities for the freshmen class. The Director of General Education participates in Welcome Day and the mandatory orientation during which time the freshman receive a half day of advising and a schedule to begin their first quarter. For freshmen that require advising once on campus they are now directed to the Office for General Education and First Year Programs where they can receive academic advice. This dynamic has caused a shift of resources for staff in the Office for General Education and First Year Programs. The program requires more staffing to continue to deliver this highly effective program and its services.

Measures comparing CSUEB students enrolled in a General Education Cluster to other entering students show they are more apt to pass Writing Skills Test, a system-wide requirement. On a national assessment of students’ experiences those who entered
CSUEB as first time freshmen reported that their course of study required more writing than their national counterparts. These and other measures indicate the wealth that the First Year Program is bringing to CSUEB.

Listed below are specific recommendations generated by the review. They are categorized by institutional, faculty, and curricular support.

Specific Program Recommendations

Institutional Support
- Make general education a university priority
- Increase President, Provost, Deans, faculty attention to the general education program
- Provide sufficient resources to continue to implement national assessment instruments as well as assess local issues at CSUEB that may not be assessed by national surveys
- Profile the General Education Cluster Program for marketing the University
- Increase collaboration across academic and student affairs to better incorporate co-curricular elements across the curriculum

Faculty Support
- Increase interest and competition to teach in the general education program by making it attractive to full time tenure track faculty
- Provide incentives for full time tenure-track faculty participating in the General Education Cluster program, e.g., a one course release after participating in 4 clusters; additional stipends to faculty participating in a General Education Cluster and General Studies Seminars because extra hours are needed for integration of cluster courses, and for on-going advisement and mentoring of students through graduation
- Reduce cluster class size to no more than 30 students per class
- Increase faculty recruitment strategies; possibly develop a faculty recruitment brochure on the benefits of teaching a General Education Cluster courses (including: recruiting majors, designing and teaching a course with a specific theme; faculty development involving new pedagogical strategies)
- Increase requirement that faculty integrate courses across components of the General Education Cluster
- Enhance the value of teaching in a General Education Cluster by writing it into PTR and providing feedback about participation especially for assistant and associate professors in the form of official written acknowledgement

Curricular Support

Clusters
- Increase the number of full time tenure track faculty teaching in general education clusters
- Increase integration of co-curricular elements with first year activities
- Investigate a better system of e-portfolio other than using the Blackboard component
- Extend the e-portfolio from entrance (first time freshman or transfer) to graduation
- Re-link the critical thinking course to the Cluster in the third quarter
- Revive sophomore clusters as an option; review student interest and impact
- Create brochure and promotional materials for students and families attempting to understand the General Education Clusters and general education requirements

General Studies – The Freshman Seminar
- Develop better connections among General Education Clusters and General Studies Seminar for improved integration
- Provide specific ideas that must be covered in the freshman seminar
- Redesign custom textbook; currently $90.00
- Provide incentives for graduate students teaching the General Studies Seminar as the course load is larger than a regular load
- Rethink the general studies requirement (now 1 unit fall; ½ unit winter; ½ unit spring quarters); do all students need all three quarters of general studies skills?

Staff Support
- Elevate the position of Director of General Education and First Year Programs to a management position
- Add a staff member SSP level to assist the Director of General Education and First Year Programs in a variety of activities, possibly including scheduling of clusters and implementing new recruitment strategies
- Elevate the current staff support from SSP II to SSP III to make it equal with professional advisors, to specifically match the job she is now being asked to perform, and for the skills she continues to develop and implement
- Add a staff member to support the Program Director

In summary, the General Education and First Year Program has implemented an outstanding experience and created an integrated and supportive general education curriculum and first year for CSUEB students. The assessment data of student learning outcomes support the goals of the program and the University. The value of the General Education Clusters must be embraced by the whole institution in their general commitment, and through adequate resource allocation.
September 26, 2008

Michael K. Mahoney

From: Michael Mahoney, Provost and Vice President, Academic Affairs

To: Carl Bellone, AVP, Academic Programs and Graduate Studies
 Sally Murphy, Director, General Education Program

Subject: MOU Meeting – General Studies Program (GE)

On September 18, 2008, I met with Carl Bellone, AVP, Academic Programs and Graduate Studies; Sally Murphy, Director, General Education Program, Armando Gonzales, AVP Academic Resources and Administration; and Aline Soules, Chair, CAPR to discuss the Program Review for the General Education Program and to develop an MOU as required by CAPR 9.

The responsibilities and duties of the Director of the General Education Program have grown significantly over the years. The General Education (GE) Program is responsible for the GS (General Studies) classes, the First Year Experience, GE advising of students, GE evaluations at graduation, GE Cluster scheduling and enrollment, orientation of cluster faculty, enforcement of remediation, academic advising of international students, plus many other duties similar to an undergraduate dean at many universities. As a result, the office staff consisting of the Director, two support staff, and one evaluator, are extremely busy.

The budget for the GE Program is insufficient. There was a deficit from last year and the growth in our first time freshmen will make it larger this year because there will be a significant increase in GS sections. In Fall Quarter 2007 there were 46 GS sections. In Fall Quarter 2008 there will be more than 70 sections. Funding for the GS faculty is not part of the FTE funding formula so it must be dealt with separately. The GE budget has not been seriously looked at for 10 years.

This was the first time CAPR has reviewed the GE Program. Previously, it was reviewed by CIC. CAPR praised the GE Program for many outstanding achievements including the nationally recognized freshmen learning communities. CAPR’s main concern was the lack of institutional support for the GE Program. CAPR made five recommendations as follows: 1) the GE Program needs a broad campaign to publicize the benefits of the GE Program, 2) the GE Program needs more input from regular faculty, 3) faculty who
teach in the GE Program need better compensation, 4) the GE Program needs additional resources and staff support, and 5) the GE Program needs to expand its assessment efforts.

The results of the MOU meeting are as follows:

1. The university should do a much better job of publicizing such an outstanding program particularly the freshmen learning communities. The AVP of Academic Programs and Graduate Studies will work with the Catalog Editor to expand the description of the GE Program in subsequent online and printed University Catalogs. In addition, the AVP will work with University Advancement to see how the program may be better publicized in their current and future publications.

2. Outside of three faculty committees, the GE Subcommittee, CIC, and CAPR, there has been little involvement of regular faculty in the GE Program. As a result, there is no other faculty person on campus intimately familiar with the entire GE program except the Director. The CAPR proposal for “faculty-in-residence” is commendable. Unfortunately, the funding for the assigned time for faculty assigned time is seriously constrained due to the reduced university budget. If and when such funding becomes available, serious consideration will be given to the “faculty-in-residence” model for GE.

3. One of the big problems facing the CSUEB GE Program is the lack of an adequate reward system and support for faculty who teach GE courses. The freshmen learning clusters work best when faculty collaborate and integrate their clusters courses and also when they work with the Composition and Information Literary courses. However, faculty are apparently reluctant to do this extra work without some form of compensation. The suggestions offered by CAPR for supporting faculty who teach in the clusters such as additional WTUs is good. But unfortunately, once again allocating additional resources is a serious problem due to the reduced university budget. If and when additional funds become available in Academic Affairs, serious consideration will be given to increasing the support for faculty who teach in the freshmen learning communities.

4. The need for additional support staff in the GE Office is clear. The AVP of Academic Programs and Graduate Studies (APGS) will work with the Director of the GE Program to how the APGS might be able to provide additional resources to the GE Office.

5. The GE Program has done a wonderful job of assessing GE in the Freshmen Learning Communities (FLC). However, assessing GE outside of the Learning Communities has been much more challenging. A student pilot with good results was conducted for the WASC accreditation involving several GE requirements in the curriculum. It is important to note that the new CSU Executive Order on GE requires assessment. Although assessing GE outside of the learning communities
is complex and difficult, CIC needs to take up this important issue in 2008/09. The Director of the GE Program and the AVP of Academic Programs and Graduate Studies are urged to bring this issue to the attention of CIC.

I sincerely appreciate the mission-critical work that goes into making our general education program work. Dr. Sally Murphy has done a phenomenal job with general education in the freshman clusters—especially given the insufficient resources available to her. However, we need to identify ways that we can get more of our faculty involved with both lower and upper division GE across the university. I recommend that the Academic Senate and the faculty undertake a strategic review of general education overall.

I’d like to thank Carl Bellone for his strong oversight of the GE program and also the CAPR members for their time and useful report.

cc: Aline Soules
 Armando Gonzales