COMMITTEE ON INSTRUCTION AND CURRICULUM

16-17 CIC 82
Monday, March 27, 2017

TO: The Academic Senate
FROM: Committee on Instruction and Curriculum (CIC)
SUBJECT: 16-17 CIC 82: MS Educational Technology
PURPOSE: Approval of the Academic Senate
ACTION REQUESTED: That the Senate approve the proposal for MS Educational Technology. Upon the approval of the President and the Chancellor’s Office, effective Fall Semester, 2018.

BACKGROUND INFORMATION:
The Senate process for approving transformed degree programs for the semester calendar is defined by 14-15 CIC 36. Currently, the M.S. in Teacher Education has five options. For semester conversion, three of the options are requesting option elevation to full degree programs so that they are in compliance with Executive Order 1071. These “options” have been operating as stand-alone programs under quarters with no shared core, so this is the appropriate revision. In this document, the Teacher Education Department is requesting that the M.S. in Education, Option in Educational Technology Leadership be elevated to an M.S. in Education Technology. The semester curriculum for the degree program, which is in Curriculog, and the Option Elevation request were unanimously approved by the Graduate Programs Subcommittee on March 8th, 2017. Small editorial corrections were suggested, as well as consultation with the Computer Science Department regarding coursework that involved teaching coding. The curriculum goes to the Academic Senate as an information item, but the option elevation request must be approved by the Academic Senate prior to being sent to the CSU Chancellor’s Office for approval. The rationale for the option elevation is on the following pages.

At its meeting on March 27, CIC unanimously recommended that the Senate approve the proposal. The Committee was informed that changes were made to EDUI 650 to address some concerns expressed by the Subcommittee. In addition, after consulting with the Computer Science Department, as recommended by the Subcommittee, the course was designated “for majors only”. The Committee understands that non-substantive changes may be made after its approval.
Proposed MS in Educational Technology
February 2017

1. **Program Type:** a) State support and c) Option Elevation

2. **Program Identification:**

 a. **Campus:** California State University, East Bay
 b. **Full degree designation and title:** Master of Science in Educational Technology
 c. **Term and academic year of intended implementation:** Fall 2018
 d. **Total number of units required for graduation:** 30 semester units
 e. **Name of department and unit with primary responsibility:** Teacher Education Department, College of Education and Allied Studies
 f. **Name, rank and title of person primarily responsible for elevation:** Dr. Li-Ling Chen, Professor, Program Coordinator
 g. **Proposed Program:** WASC Substantive Change review and approval is not required.
 h. **Proposed Classification of Instructional Programs and CSU Degree Program Code:** CIP Code: 13.0501; CSU Degree Program Code: 08992.
 i. **Teach-out Policy:** Students admitted to the existing program within 5 years will be allowed to finish the program. Course equivalencies are also denoted so that students can complete the current program.
 j. **Evidence current option will be discontinued.** The current option will be discontinued when all existing students exit the program. Also, as the revised CSUEB catalog for 2018-19 shows, applications will not be accepted for the current option.

3. **Program Overview and Rationale:**

 a. **Program Description, Purpose and Strengths:**

 The MS in Educational Technology is designed for educators and e-learning developers with a focus on integrating current technologies into educational curricula. The emphasis on integrating technologies in both K-16 and business settings is a strength of the program, along with the focus in each course on 21st Century skills demanded by the Common Core State Standards (CCSS) and the New Generation Science Standards (NGSS), e.g., collaboration, creativity, critical thinking, and communication.

 The program includes instruction in the foundations of educational technology, instructional design theories, computer applications, utilizing
technology for assessment, multimedia instruction, web-based instruction, distance education, and designing and producing educational software and materials. Students in this program gain knowledge in emerging technologies, instructional design, e-learning development, learning theories, multimedia production, and collaborative production. Students also gain a deep understanding of adapting to the demands of the ever-changing nature of technologies. Graduates will be active in school districts, county offices of education, community colleges, the field of instructional design, and the high-tech industry.

Justification for Elevating the Option:
The MS in Educational Technology provides participants the opportunity to gain technological and educational knowledge to nurture professional growth in both educational and technology training environments.

With the rapid advances in technology and the introduction of new technological tools for teaching and learning, the time has come to bring about changes to the CSU East Bay graduate program in Educational Technology. Converting from a quarter system to a semester system provides the perfect opportunity to transform courses in the program; the courses will then create a full degree in Educational Technology with 100% of the courses focused on this topic.

Market demands for current technologies and educational standards influence program courses. In the curriculum, we eliminated two core courses and several electives that are no longer demanded by the market. The five course and six electives that we chose to keep are based on the Common Core State Standards (CCSS) and the Next Generation Science Standards (NGSS). These standards, along with new educational standards being developed in other content areas (e.g., the visual and performing arts and physical education) arise out of 21st Century Skills demanded by education. The new CCSS and NGSS standards are aligned with a new set of tests, the Smarter Balanced Assessments, to be used in K-12 classrooms. The Smarter Balanced Assessments are computer-based tests, requiring a much more sophisticated use of technology by teachers in the classroom. Graduates of this program will have this expertise and be able to teach more effectively using other educational technologies in the classroom.

b. **Proposed Catalog Copy Description**, including Program Overview, Degree Requirements (including course catalog numbers, titles and units), and Admission Requirements.

Catalog Overview:
The Master’s Degree in Educational Technology is designed for educators and e-learning developers with a focus on integrating current technologies into educational curricula. The emphasis on integrating technologies in
both K-16 and business settings is a strength of the program, along with the focus in each course on 21st Century skills demanded by the Common Core State Standards (CCSS) and the New Generation Science Standards (NGSS), e.g., collaboration, creativity, critical thinking, and communication.

The program includes instruction in the foundations of educational technology, instructional design theories, computer applications, utilizing Technology for assessment, multimedia instruction, web-based instruction, distance education, and designing and producing educational software and materials. Students in this program gain knowledge in emerging technologies, instructional design, e-learning development, learning theories, multimedia production, and collaborative production. Students also gain a deep understanding of adapting to the demands of the ever-changing nature of technologies.

Career Opportunities:
Graduates will be active in school districts, county offices of education, community colleges, the field of instructional design, and the high-tech industry. The positions that our graduates take include, for example, educational technologist, instructional designer, curriculum specialist, community college instructor, district technology director, and technology trainer.

Admission Requirements:

1. Candidates must hold a baccalaureate degree from an accredited institution.

2. Candidates must have earned a 3.0 Grade Point Average (GPA) in all upper division or post baccalaureate coursework.

3. If a candidate has a baccalaureate degree from out of the country, he/she must have his/her transcripts evaluated by the International Graduate Student Admissions Office.

4. The MS in Education Technology program requires applicants to show evidence of successful training or teaching experience.

5. Have met the University Writing Skills Requirements (UWSR). (For information about meeting the USWR, see the Testing Office website at www.csueastbay/testing or call 510.885.3661.)

Degree Requirements (30 units)

1. Completed at least 30 units of approved graduate work, subject to the following conditions:
 a. All units must have been earned within the past five (5) years.
immediately preceding completion of the requirements for the degree.

b. No fewer than 70% (or 21 semester units) must have been completed in residence as a regularly matriculated student in the graduate program at Cal State East Bay.

c. No more than nine (9) semester units of approved courses may be transferred from another institution, taken through approved extension courses (including Open University), or taken as an “Unclassified Post-Baccalaureate” student.

d. At least 15 semester units must have been in courses numbered in the 600-series or equivalent graduate level.

2. Satisfied the University Writing Skills Requirement.
3. Earned at least a 3.0 GPA in all units satisfying the requirements of the degree program.
4. Completed a University Thesis or a Graduate Project course within five (5) years of admission to the program.

Required and Elective Courses and Units:

Students need to complete a total of 30 semester units to graduate with 20 units of required courses and 10 units of elective courses.

Required courses (20 units):
EDUI 610 Web as an Interactive Educational Tool (4 Units)
EDUI 620 Theories and the Design of E-learning (4 Units)
EDUI 630 Math, Science, and Technology (4 Units)
EDUI 640 Research in Educational Technology (4 Units)

Elective Courses (10 units):
EDUI 650 Mobile Application Development, 4 Units
EDUI 660 Digital Graphics, 4 Units
EDUI 670 Principles of Instructional Design, 4 Units
EDUI 680 Current Technologies, 2 Units
EDUI 690 Independent Study, 4 units
EDUI 695 Educational Technology Internship, 4 units

c. **Provide written documentation of the campus approval process** with written evidence of a significantly greater campus and administrative commitment to sustain the standalone program than was required to establish it as a specialization area. (Please see attached letter from Dean Carolyn Nelson.)

The elevation of this degree will enable the Department of Teacher Education to focus on the needs and interests of the graduate students in this program. A separate master’s degree will also allow in-depth and rigorous learning because there will be more courses in the elevated degree that are about educational technology, not general education. Having a separate master’s degrees will also improve the department’s ability to recruit graduate students. Finally, teachers who possess this master’s degrees will be experts in the field, enabling them to step into the role of teacher-leaders, for example.

Elevation of this current option to separate master’s degrees is cost neutral. Making the change while the university transitions to the semester system is appropriate and reflects the opportunity the department is taking to transform its programs to meet the needs of the changing educational environment.

4. **Curriculum**

a. **Provide a side-by-side comparison** showing the course requirements of the existing degree major and concentration on one side and the proposed new major on the other. (Please see following page.)
<table>
<thead>
<tr>
<th>The existing quarter-based MS in Education, Educational Technology Leadership option (45 units)</th>
<th>The proposed semester-based MS in Educational Technology (30 units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seven courses – 24 units</td>
<td>Four courses – 16 units</td>
</tr>
<tr>
<td>EDUI 6110 Web as an Interactive Educational Tool, 4 Units</td>
<td>EDUI 610 Web as an Interactive Educational Tool, 4 Units</td>
</tr>
<tr>
<td>EDUI 6200 Theories and the Design of E-Learning, 4 Units</td>
<td>EDUI 620 Theories and the Design of E-Learning, 4 Units</td>
</tr>
<tr>
<td>EDUI 6240 Math, Science, and Technology, 4 Units</td>
<td>EDUI 630 Math, Science, and Technology, 4 Units</td>
</tr>
<tr>
<td>EDUI 6500 Research in Educational Technology, 4 Units</td>
<td>EDUI 640 Research in Educational Technology, 4 Units</td>
</tr>
<tr>
<td>EDUI 6350 Language Arts, Social Studies and Educational Technology, 4 units</td>
<td></td>
</tr>
<tr>
<td>EDUI 6600 Interface Design, 4 Units</td>
<td></td>
</tr>
<tr>
<td>Elective courses – Choose 16 units</td>
<td>Elective courses – Choose 10 units</td>
</tr>
<tr>
<td>EDUI 6250 iPad and iPhone Application Development, 4 Units</td>
<td>EDUI 650 Mobile Application Development, 4 Units</td>
</tr>
<tr>
<td>EDUI 6005 Digital Graphics, 4 Units</td>
<td>EDUI 660 Digital Graphics, 4 Units</td>
</tr>
<tr>
<td>EDUI 6210 Principles of Instructional Design, 4 Units</td>
<td>EDUI 670 Principles of Instructional Design, 4 Units</td>
</tr>
<tr>
<td>EDUI 6315 Current Technologies, 2 Units</td>
<td>EDUI 680 Current Technologies, 2 Units</td>
</tr>
<tr>
<td>EDUI 6900 Independent Study, 4 units</td>
<td>EDUI 690 Independent Study, 4 units</td>
</tr>
<tr>
<td>EDUI 6420 Practicum / Technology Internship, 4 units</td>
<td>EDUI 695 Educational Technology Internship, 4 units</td>
</tr>
<tr>
<td>EDUI 6098 Designing Interactive Multimedia Materials, 4 units</td>
<td></td>
</tr>
<tr>
<td>EDUI 6120 Distance Learning, 4 units</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>EDUI 6150</td>
<td>Current Issues in Educational Technology</td>
</tr>
<tr>
<td>EDUI 6400</td>
<td>Educational Technology: Planning for Innovation and Change</td>
</tr>
<tr>
<td></td>
<td>Capstone (5 Units)</td>
</tr>
<tr>
<td>EDUI 6899</td>
<td>Master’s Project</td>
</tr>
<tr>
<td></td>
<td>Capstone (4 Units)</td>
</tr>
<tr>
<td></td>
<td>EDUI 693 Master’s Project</td>
</tr>
</tbody>
</table>
b. **Assessment Plan.** These program proposal elements are required:

- **X** Comprehensive assessment plan addressing all assessment elements. (Please see following page.)
<table>
<thead>
<tr>
<th>A: ILOs</th>
<th>B: PLOs</th>
<th>C: SLOs</th>
<th>D: Course In which SLO Assessed</th>
<th>E: Assessment activity measuring SLOs</th>
<th>F: Assessment tool measuring outcome success</th>
<th>G: Assessment schedule</th>
<th>H: How data will be reported – quantitative & qualitative</th>
<th>I: Designated personnel to collect, analyze, & interpret SLO data</th>
<th>J: Program Data Dissemination schedule</th>
<th>K: Closing the loop strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thinking and Reasoning: Assess the importance and use of technology to support diverse student’s learning.</td>
<td>Evaluate and utilize various web-based, emerging and collaborative tools, such as discussion forums, social media, and video conferencing, to meet the needs of a diverse student body.</td>
<td>EDUI 610 The Web as Interactive Educational Tool</td>
<td>Web-based interactive and emerging technologies evaluation</td>
<td>The instructor uses a checklist, observation, and rubric to assess the quality of students’ uses and evaluation of the web-based tools.</td>
<td>Every two weeks</td>
<td>Quantitative: The instructor uses an assessment rubric with the number of students scoring at or above 3.0 on a 4.0 scale will measure mastery of the SLO. The instructor will also use a checklist that outlines required skills to ensure students meet the SLO. Percentage of highly proficient students will be reported. Qualitative: The instructor’s narrative observations reported as trends in the quality of student’s use and evaluation of web-based interactive tools.</td>
<td>The instructor of the course</td>
<td>At the end of spring semester in Blackboard.</td>
<td>The instructor and program Advisory Board meets in early June once a year to discuss the collected data. Improvement strategies include revising the course syllabus, learning activity, assessment plan and curriculum.</td>
<td></td>
</tr>
<tr>
<td>A: ILOs</td>
<td>B: PLOs</td>
<td>C: SLOs</td>
<td>D: Course In which SLO Assessed</td>
<td>E: Assessment activity measuring SLOs</td>
<td>F: Assessment tool measuring outcome success</td>
<td>G: Assessment schedule</td>
<td>H: How data will be reported – quantitative & qualitative</td>
<td>I: Designated personnel to collect, analyze, & interpret SLO data</td>
<td>J: Program Data Dissemination schedule</td>
<td>K: Closing the loop strategies</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>-------------------------------</td>
<td>--</td>
<td>---</td>
<td>------------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Identify and investigate educational theories and instructional design principles to generate new ideas, projects, and materials for diverse students.</td>
<td>Describe the learning theories underpinnings of educational technology design.</td>
<td>EDUI 620 Theories and the Design of E-Learning</td>
<td>Website Development Project</td>
<td>The instructor uses a checklist, observation, and rubric to assess students’ website projects.</td>
<td>Each semester</td>
<td>Qualitative: The instructor’s narrative feedback will be reported as patterns/trends. Quantitative: Assessment rubric with the number of students scoring at or above 3.0 on a 4.0 scale will measure mastery of the SLO. Percentage of highly proficient students reported. The instructor will also use a checklist that outlines required skills to ensure the SLO is met. Percentage of students meeting the SLO will be reported.</td>
<td>The instructor of the course</td>
<td>At the end of spring semester in Blackboard.</td>
<td>The instructor and program Advisory Board meets in early June once a year to discuss the collected data. Improvement strategies include revising the course syllabus, learning activity, assessment plan and curriculum.</td>
<td></td>
</tr>
<tr>
<td>Create and develop effective instructional or e-learning materials by choosing</td>
<td>Apply theories and research of instructional technology to develop STEM instructional materials for the web,</td>
<td>EDUI 630 Math, Science & Technology</td>
<td>STEM Instructional Materials Development</td>
<td>The instructor uses a checklist, observation, and rubric to assess STEM Instructional materials that students create.</td>
<td>Every eight weeks</td>
<td>Quantitative: Assessment rubric with the number of students scoring at or above 3.0 on a 4.0 scale will measure mastery of the SLO. Percentage of high proficiency students are reported.</td>
<td>The instructor of the course</td>
<td>At the end of spring semester in Blackboard.</td>
<td>The instructor and program Advisory Board meets in early June once a year to discuss the collected data. Improvement strategies include revising the course syllabus, learning activity, assessment plan and curriculum.</td>
<td></td>
</tr>
</tbody>
</table>

Communication

Communicate ideas, perspectives, & values clearly & persuasively while listening openly to others

- Identify and investigate educational theories and instructional design principles to generate new ideas, projects, and materials for diverse students.
- Describe the learning theories underpinnings of educational technology design.
- EDUI 620 Theories and the Design of E-Learning
- Website Development Project
- The instructor uses a checklist, observation, and rubric to assess students’ website projects.
- Each semester
 - Qualitative: The instructor’s narrative feedback will be reported as patterns/trends.
 - Quantitative: Assessment rubric with the number of students scoring at or above 3.0 on a 4.0 scale will measure mastery of the SLO. Percentage of highly proficient students reported. The instructor will also use a checklist that outlines required skills to ensure the SLO is met. Percentage of students meeting the SLO will be reported.
- The instructor of the course
- At the end of spring semester in Blackboard.

Collaboration

Work collaboratively & respectfully as members & leaders of diverse teams

- Create and develop effective instructional or e-learning materials by choosing
- Apply theories and research of instructional technology to develop STEM instructional materials for the web, | EDUI 630 Math, Science & Technology | STEM Instructional Materials Development | The instructor uses a checklist, observation, and rubric to assess STEM Instructional materials that students create. | Every eight weeks | Quantitative: Assessment rubric with the number of students scoring at or above 3.0 on a 4.0 scale will measure mastery of the SLO. Percentage of high proficiency students are reported. | The instructor of the course | At the end of spring semester in Blackboard. | The instructor and program Advisory Board meets in early June once a year to discuss the collected data. Improvement strategies include revising the course syllabus, learning activity, assessment plan and curriculum. |
A: ILOs
B: PLOs
C: SLOs
D: Course In which SLO Assessed
E: Assessment activity measuring SLOs
F: Assessment tool measuring outcome success
G: Assessment schedule
H: How data will be reported - quantitative & qualitative
I: Designated personnel to collect, analyze, & interpret SLO data
J: Program Data Dissemination schedule
K: Closing the loop strategies

and applying appropriate tools and design theories individually and collaboratively.

mobile application, and classroom.

highly proficient students reported. The instructor will also use a checklist that outlines required skills to ensure SLO is met. Percentage of students meeting SLO will be reported.

Qualitative: Instructor’s narrative observation on the quality of the STEM instructional materials. Trends reported.

The instructor will use checklist, observation, and rubric to assess students’ literature reviews.

Each semester

Quantitative: Assessment rubric with the number of students scoring at or above 3.0 on a 4.0 scale will measure mastery of the SLO. Percentage of highly proficient students reported. The instructor will also use a checklist which outlines required

The instructor of the course

At the end of spring semester in Blackboard.

include revising the course syllabus, learning activity, assessment plan and curriculum.

Diversity:

Apply knowledge of diversity and multicultural competencies to promote equity & social justice in our community

Gather, use, and analyze data, bibliographic and other resources of materials extensively and critically.

Write a literature review by conducting researching, analyzing and synthesizing their scholarly findings.

EDUI 640 Research in Educational Technology

Literature Review

The instructor uses checklist, observation, and rubric to assess students’ literature reviews.

The instructor of the course

At the end of spring semester in Blackboard.

The instructor and program Advisory Board meets in early June once a year to discuss the collected data. Improvement strategies include revising the course syllabus, learning activity, assessment
<table>
<thead>
<tr>
<th>A: ILOs</th>
<th>B: PLOs</th>
<th>C: SLOs</th>
<th>D: Course In which SLO Assessed</th>
<th>E: Assessment activity measuring SLOs</th>
<th>F: Assessment tool measuring outcome success</th>
<th>G: Assessment schedule</th>
<th>H: How data will be reported – quantitative & qualitative</th>
<th>I: Designated personnel to collect, analyze, & interpret SLO data</th>
<th>J: Program Data Dissemination schedule</th>
<th>K: Closing the loop strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Sustainability: Act responsibly & sustainably at local, national, & global levels</td>
<td>Write and present scholarly findings and projects independently.</td>
<td>Demonstrate the mastery of educational technology by designing and producing a significant and original technology project accompanying a written proposal to present to faculty and a diverse student body in the program.</td>
<td>EDUI 693 Master’s Project</td>
<td>Master’s Project</td>
<td>The instructor uses checklist, observation, and rubric to assess students’ master’s projects.</td>
<td>Each semester</td>
<td>Quantitative: Assessment rubric with a number of the mean scoring at or above 3.0 on a 4.0 point scale will measure mastery of the SLO. Percentage of highly proficient students reported. The instructor will also use a checklist that outlines required skills for the assignment to ensure students</td>
<td>The instructor of the course</td>
<td>At the end of spring semester in Blackboard.</td>
<td>The instructor and program Advisory Board meets in early June once a year to discuss the collected data. Improvement strategies include revising the course syllabus, learning activity, assessment plan and curriculum.</td>
</tr>
<tr>
<td>A: ILOs</td>
<td>B: PLOs</td>
<td>C: SLOs</td>
<td>D: Course In which SLO Assessed</td>
<td>E: Assessment activity measuring SLOs</td>
<td>F: Assessment tool measuring outcome success</td>
<td>G: Assessment schedule</td>
<td>H: How data will be reported – quantitative & qualitative</td>
<td>I: Designated personnel to collect, analyze, & interpret SLO data</td>
<td>J: Program Data Dissemination schedule</td>
<td>K: Closing the loop strategies</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>-------------------------------</td>
<td>--------------------------------</td>
<td>---</td>
<td>------------------------</td>
<td>--</td>
<td>--</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

meet the SLO. Percentage of highly proficient students reported.

Qualitative: Instructor's narrative feedback on the quality of student's master project reported as patterns in developing a master's project.
Matrix showing where student learning outcomes are introduced (I), Developed (D), and mastered (M)

Curriculum Map Matrix

<table>
<thead>
<tr>
<th>PLOs</th>
<th>PLO 1</th>
<th>PLO 2</th>
<th>PLO 3</th>
<th>PLO 4</th>
<th>PLO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDUI610, Web as an Interactive Edu Tool</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>EDUI620, Theories & Design of E-learning</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>EDUI630, Math, Science, & Tech</td>
<td>M</td>
<td>M</td>
<td>D</td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>EDUI640, Research in Educational Technology</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>D</td>
<td>M</td>
</tr>
<tr>
<td>EDUI693, Project</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
</tbody>
</table>

5. **Evidence of Potential Student Demand**
 Please provide enrollment numbers in the current option for the past three to five years to provide evidence of sustained and possible future interest in the program.
Proposed MS in Educational Technology
Student Enrollment Numbers
Fall 2012 - Winter 2017

Fall 2012 - Summer 2013 Fall 2013 - Summer 2014 Fall 2014 - Summer 2015 Fall 2015 - Spring 2016 Fall 2016 - Winter 2017

0 5 10 15 20 25 30 35 40
March 10, 2017

From: Dean Carolyn Nelson

To: Chancellor’s Office

Re: Commitment to Support Master of Science degrees in Early Child Education, Educational Technology and Reading

I fully support the elevation of the following master’s degree programs from options in the Master of Science in Education to stand-alone degrees:

- Master of Science in Early Child Education
- Master of Science in Educational Technology
- Master of Science in Reading

I can ensure that the administrative commitment to sustain the stand-alone programs will be greater than was required to establish them as specialization areas. First of all, we expect enrollments to rise. For example, a separate master's degree improves the department’s ability to recruit graduate students to a specific area, not just a general master’s degree in education with several different options. Secondly, a separate master’s degree allows for in-depth and rigorous learning in the specific area covered. Finally, teachers who possess one of these stand-alone degrees will be immediately recognized as experts in their fields, enabling them to step into the role of teacher-leaders, for example.

Making this change while the university transitions to the semester system is appropriate and reflects the opportunity the department is taking to transform its programs to meet the needs of the changing educational environment.