Application for General Education Credit
for Lower Division Social Science Course (Area D1-3)

Course title: Environmental Politics                  Course number: POSC 1171

Maximum enrollment

Courses approved for general education credit must provide students with explicit instruction in the approved student learning outcomes. Please be as specific as possible in your explanations, describing topics, readings, assignments, activities and assessments that illustrate how the course supports students' acquisition of the learning outcomes. Remember, there may be no one on the review committees who has any knowledge of your discipline. Attach the course syllabus and any assignments and/or assessments needed to support your explanations.

Please use this template to address ALL of the following learning outcomes:

Courses in this area acquaint students with fundamental principles and methods of inquiry, theoretical problems, and applications grounded in social science disciplines whose field of study is human behavior in its social environment.

1. Students will demonstrate, orally and in writing, recognition of the application of disciplinary concepts derived from at least three social or behavioral sciences in the study of human behavior, individually and in society.
   State at least two standard or basic theories and models

   Define key disciplinary terms
   Governments, NGOs, IGOs. Activist, equity, blocking coalitions. Power relations

   Identify professional applications of disciplinary concepts
   Environmental policy-making, environmental advocacy, international diplomacy & negotiation

2. Students will demonstrate, orally and in writing, recognition of the inquiry methods used by at least one of the social or behavioral science disciplines.
   Identify key research issues
   Environmental & health impacts of pollution, levels of compliance with environmental laws, policies & treaties.

   Describe how hypotheses or research questions are formed
   List examples of data that are examined
   UN data on government compliance with environmental treaties (Carbon emissions, ozone depleting substance emissions, air & water quality data, loss of biodiversity records.

   Describe how data are analyzed
Example: students examine GHG emissions compared on a country-by-country basis & correlate them with energy use & GDP. They are responsible for discussing in class & in writing what implications can be drawn from this data about relationships between economic development, energy use & carbon pollution.

3. Students will demonstrate, orally and in writing, the ability to describe how human diversity and the diversity of human societies influence our understanding of human behavior, individually and in societies, both local and global. The impact of domestic & international environmental problems upon classes, races, genders & countries at different levels of development are highlighted in this course. Lectures, group discussions, films & short student essay exams focus on these topics. The issue of environmental justice is given special attention, as it applies to impoverished communities (urban & rural), hazardous occupations & poor nations. In addition, the uneven capacities of affected communities to use the political system to defend their interests & advance their well-being is given particular attention. This course looks at environmental justice issues from the Bay Area to the global South.

4. Students will demonstrate, orally and in writing, some knowledge of the political, social, and/or economic institutions of a country other than the United States. The first half of this course is focused the American political system’s capacity to protect the domestic environment—through its laws & regulations; its regulatory agencies; and its judicial rulings. The last half of the course compares the American system’s environmental protection process with other developed countries as well as the developing nations of the global South. In addition, the capacity of the international community to forge cooperative agreements & treaties to respond to global environmental threats is analyzed in great detail. Lectures, group discussions, films & short student essay exams all focus on these topics.

5. Students will demonstrate, orally and in writing, the ability to describe major positions and contrasting arguments made on one or more significant contemporary issue area confronting US society as applied to human behavior. (Possible areas include: biomedical and health issues, class, crime, discrimination, education, energy, environment, gender, global economy, immigration, military intervention abroad, poverty, race, technology.) This course devotes special attention to the contending eco-political philosophies that shape contemporary thinking around environmental policy. Students are exposed to several rival schools of thought regarding the proper relationship between the humans & nature. In addition, ample attention is given to the ongoing debates around what constitutes sustainability in terms of energy use, global trade, agriculture, population, consumption, transportation and living arrangements.
Application for General Education Credit
for Lower Division Science Elective (Area B3)

Course title: Global Environmental Issues
Course number: ENSC 2801

Note: This course has already been approved for GE Area B3 credit as ENSC 2800 - Environmental Problems of California. ENSC 2801 is a cluster-specific version of ENSC 2800. The document below is a modified GE course proposal, since the original proposal was prepared before the adoption of the current form.

Courses approved for general education credit must provide students with explicit instruction in the approved student learning outcomes. Please be as specific as possible, pointing to topics, readings, assignments, activities and assessments that illustrate how the course meets the requirements. Attach the course syllabus and any assignments or assessments needed to support your explanations.

Please use this template as a guide to address ALL of the following learning outcomes

Purpose of Science GE: The goal of lower division general education in the natural sciences is to gain basic knowledge and learn key principles in the life and physical sciences as essential for an informed citizenry. In addition, students should recognize the experimental and empirical methodologies characteristic of science and understand the modern methods and tools used in scientific inquiry.

1. Students will demonstrate a broad science content knowledge in the physical, life, or interdisciplinary sciences.

This course is designed to be a vehicle for integrating a range of science skills and knowledge into an examination of critical science-based issues that affect the lives of CSUEB students as well as all Californians. Students are given an opportunity to apply the knowledge they have gained and further the interests they have and will acquire in other science classes by studying, evaluating and communicating to their professor and peers the nature, significance and potential solutions to ongoing or predicted environmental problems in the state. Through class instruction and through individual guided research, each student will develop a more profound knowledge of the natural sciences and how the physical and biological components interact with other non-science areas to create the multifaceted environmental problems faced by this increasingly populated state. This class will provide a broad based education in the natural sciences as well as a balanced exposure to the application of both the life and physical sciences through the examination of environmental problems. Environmental issues will form the backdrop for an interdisciplinary examination of science topics.

2. Students will demonstrate the application of quantitative skills (such as statistics, mathematics, the interpretation of graphical data, etc.) to scientific problems.

Students will be required to apply quantitative skills to the analysis of such diverse topics as population growth, nuclear energy, background extinction rates, and water quality. They will be asked to examine relationships between different facets of information, for example the comparison between increase in atmospheric carbon dioxide levels and changes in climate. As another example, students will learn about the First and Second Laws of Thermodynamics and learn to apply these laws in their interpretations of how energy is used efficiently and inefficiently (e.g., Did you know that only about 20% of the high-quality energy in gasoline is transformed into usable mechanical and electrical energy by the typical automobile?). Quantitative analysis of graphical, statistical and mathematical information, such as that noted above, will be stressed throughout the class, both in class instruction and in the student analysis and
presentation of research topics. Students must clearly demonstrate the application of quantitative skills including the ability to understand and perform statistical and mathematical procedures and interpret tabular and graphical data ranging from histograms and scatterplots to maps and Venn diagrams.

3. Students will demonstrate a general understanding of the nature of science, the methods applied in scientific investigations, and the value of those methods in developing a rigorous understanding of the physical world. Students should be able to identify the difference between science and other fields of knowledge. Students should be able to distinguish science from pseudoscience.

Students will develop a clearer understanding of the complex nature of a range of important environmental issues through the examination of scientific methods of investigation and discussions of topics that constitute science vs. pseudoscience. As an example, topics to be discussed will include evolution, the scientific evidence in support of evolution, and scientific methods for studying evolution. We will also examine physical earth processes such as plate tectonics, and will discuss evidence for continental drift with its effects on the biogeography of different groups of organisms. We will require students to conduct thematic research projects to evaluate the information available about the scientific bases for and implications of different California environmental problems. Students will learn to identify, assess and synthesize a wide array of information from different sources and data types to arrive at a clear understanding of a topic about which they had only limited prior knowledge.
Application for General Education Credit
for Lower Division Humanities Course (Area C2 or C3)

Course title: The Philosophy of Environmental Science and Policy
Course number: PHIL 1104

Maximum enrollment: To be determined, depending on size of cluster.

Note: This course was approved for GE Area C2 or C3 credit as PHIL 1101.
PHIL 1104 is a cluster-specific version of PHIL 1101. This document uses the current
GE course proposal form to explain how this course addresses learning outcomes.

Courses approved for general education credit must provide students with explicit instruction in the
approved student learning outcomes. Please be as specific as possible in your explanations, describing
topics, readings, assignments, activities and assessments that illustrate how the course supports
students’ acquisition of the learning outcomes. Remember, there may be no one on the review
committees who has any knowledge of your discipline. Attach the course syllabus and any assignments
and/or assessments needed to support your explanations.

Please use this template to address ALL of the following learning outcomes.

Letters: Courses in Letters examine significant written and/or oral texts of the creative intellect. The
major goals are: (a) to teach the critical examination of ideas and theories through the use of historical,
linguistic, literary, philosophical, and/or rhetorical approaches and methods; and (b) to encourage
understanding of enduring human concerns and the intellectual and cultural traditions within which they
arise.

1. Students will demonstrate through oral and written work how foundational works in
the humanities illuminate enduring human concerns and the intellectual and cultural
traditions within which these concerns arise, including both classical and contemporary
artists and/or theorists.

The body of literature that relates to human interaction with the environment is vast and
diverse. It covers both developments in science as well as social issues such as attitudes
toward our environment. Students will be required to address a variety of works across a
variety of fields.

2. Students will demonstrate a developing understanding of the interaction among
historical and cultural contexts, individual works, and the development of humanities
over time.

Students will be required to study writing and ideas about the environment both historical
and modern. Students will realize how certain concerns are persistent (like the difference
between intrinsic and instrumental value) while other concerns are contemporary (like
concerns based on recent science).

3. Through oral and written work, students will demonstrate their ability to critically
employ concepts, theories, and methods of analysis used in the humanities to interpret
and evaluate enduring human concerns.
Critical reflection is the theme of the class. Students will be required to develop a detailed understanding of the arguments, but they will also be required to evaluate the arguments in such a way so that they are aware of their strengths and weaknesses and can identify what would qualify as support or criticisms of those arguments.

4. Students will critically reflect on the formation of human goals and values, and will articulate an understanding of the creativity reflected in works of the humanities that influenced the formation of those values.

Students will discover that the obvious arguments are rarely the best because they fail to demonstrate a thorough understanding or relevant skills related to the detailed study of environmental ethics. Students will come to appreciate the value of interesting thoughtful studies and arguments.