Problem for 2015 September and October

Proposed by Dan Jurca

A drill with radius $r, r \le 1/\sqrt{2}$, bores a hole from one corner of a solid cube with edge 1 through the center of the cube to (and through) the diagonally opposite corner, the axis of the drill coinciding with the diagonal of the cube; how much material does the drill remove from the cube?

Solution by the proposer

Consider first a ("unit") cube in Euclidean 3-space with vertices P_0, \ldots, P_7 as follows.

$$P_0 = (0,0,0), P_1 = (1,0,0), P_2 = (0,1,0), P_3 = (1,1,0)$$

 $P_4 = (0,0,1), P_5 = (1,0,1), P_6 = (0,1,1), P_7 = (1,1,1)$

Rotating first through $\pi/4$ about the z-axis, and then through $\cos^{-1}(1/\sqrt{3})$ about the x-axis repositions the cube so that the origin P_0 remains fixed, and the vertex P_7 moves to $(0,0,\sqrt{3})$. We accomplish the first of these motions with the linear transformation sending the standard basis vectors as follows,

$$\langle 1, 0, 0 \rangle \mapsto \langle 1/\sqrt{2}, 1/\sqrt{2}, 0 \rangle$$
 $\langle 0, 1, 0 \rangle \mapsto \langle -1/\sqrt{2}, 1/\sqrt{2}, 0 \rangle$ $\langle 0, 0, 1 \rangle \mapsto \langle 0, 0, 1 \rangle$

and represent this transformation with the following matrix.

$$A_1 = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} & 0\\ 1/\sqrt{2} & 1/\sqrt{2} & 0\\ 0 & 0 & 1 \end{bmatrix}$$

This sends the point P_7 to the point $(0, \sqrt{2}, 1)$. Then the dot product $(0, 0, 1) \cdot (0, \sqrt{2}, 1) = 1 = \sqrt{3} \cos \theta$ where $\cos \theta = 1/\sqrt{3}$ and $\sin \theta = \sqrt{2}/\sqrt{3}$. Therefore we accomplish the second of these motions with the linear transformation sending the standard basis vectors as follows,

$$\langle 1, 0, 0 \rangle \mapsto \langle 1, 0, 0 \rangle$$
 $\langle 0, 1, 0 \rangle \mapsto \langle 0, 1/\sqrt{3}, \sqrt{2}/\sqrt{3} \rangle$ $\langle 0, 0, 1 \rangle \mapsto \langle 0, -\sqrt{2}/\sqrt{3}, 1/\sqrt{3} \rangle$

and represent this transformation with the following matrix.

$$A_2 = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1/\sqrt{3} & -\sqrt{2}/\sqrt{3}\\ 0 & \sqrt{2}/\sqrt{3} & 1/\sqrt{3} \end{bmatrix}$$

Therefore we represent the two motions with the product $A = A_2 A_1$, where A equals the following orthogonal matrix.

$$A = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} & 0\\ 1/\sqrt{6} & 1/\sqrt{6} & -\sqrt{2}/\sqrt{3}\\ 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \end{bmatrix}$$

Thus we obtain a (unit) cube with vertices Q_0, \ldots, Q_7 as follows. (Here $0 \le i \le 7 \implies A: P_i \mapsto Q_i$.)

$$Q_0 = (0,0,0), \ Q_1 = (1/\sqrt{2},1/\sqrt{6},1/\sqrt{3}), \ Q_2 = (-1/\sqrt{2},1/\sqrt{6},1/\sqrt{3}), \ Q_3 = (0,\sqrt{2}/\sqrt{3},2/\sqrt{3})$$

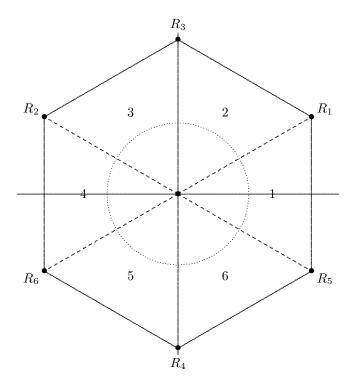
$$Q_4 = (0,-\sqrt{2}/\sqrt{3},1/\sqrt{3}), \ Q_5 = (1/\sqrt{2},-1/\sqrt{6},2/\sqrt{3}), \ Q_6 = (-1/\sqrt{2},-1/\sqrt{6},2/\sqrt{3}), \ Q_7 = (0,0,\sqrt{3})$$

The volume in question then equals the volume of the region common to this rotated cube and the cylinder with equation $x^2 + y^2 = r^2$. To compute this volume we consider the following points R_0, \ldots, R_7 obtained by projecting the points Q_0, \ldots, Q_7 , respectively, onto the x-y plane.

$$R_0 = (0,0,0), \ R_1 = (1/\sqrt{2},1/\sqrt{6},0), \ R_2 = (-1/\sqrt{2},1/\sqrt{6},0), \ R_3 = (0,\sqrt{2}/\sqrt{3},0)$$

$$R_4 = (0,-\sqrt{2}/\sqrt{3},0), \ R_5 = (1/\sqrt{2},-1/\sqrt{6},0), \ R_6 = (-1/\sqrt{2},-1/\sqrt{6},0), \ R_7 = (0,0,0)$$

The following sketch shows these points, and six sections 1, 2, ..., 6, each in the shape of an equilateral triangle, determined by them. (We look down from the positive z-axis onto the x-y plane, with the x-axis pointing to the right and the y-axis upward.)



Equations of the dashed lines : $y = \pm x/\sqrt{3}$, and of the dotted circle: $x^2 + y^2 = r^2$. The distance from the origin to the line containing R_1 and R_5 equals $1/\sqrt{2}$; (hence the constraint $r \le 1/\sqrt{2}$). The dashed lines and the dotted circle intersect in the four points $(\sqrt{3}/2r, 1/2r), (-\sqrt{3}/2r, 1/2r), (-\sqrt{3}/2r, -1/2r)$, and $(\sqrt{3}/2r, -1/2r)$.

The volume of the region in question equals the sum of the volumes of six regions — that above section 1 in the cylinder, that above section 2 in the cylinder, . . ., and that above section 6 in the cylinder. We observe that six planes bound the rotated cube — three containing the point Q_0 , and three containing the point Q_7 . The volume of the region above section 1 equals that within the cylinder with equation $x^2 + y^2 = r^2$, below the plane containing points Q_1, Q_3, Q_5 , and Q_7 , and above the plane containing the points Q_0, Q_1, Q_4 , and Q_5 . (We observe that the upper plane contains the point Q_7 and must also contain Q_1 and Q_5 , since these points project onto Q_1 and Q_5 , respectively, and only the plane $Q_1Q_3Q_5Q_7$ contains Q_7 and also Q_1 and Q_5 ; and the lower plane contains the point Q_0 and must also contain the points Q_1 and Q_5 .) We reason similarly for the other five regions, and summarize in the following table.

region	section	above plane	below plane
1	$R_0R_1R_5$	$Q_0Q_1Q_4Q_5$	$Q_1Q_3Q_5Q_7$
2	$R_0R_1R_3$	$Q_0Q_1Q_2Q_3$	$Q_1Q_3Q_5Q_7$
3	$R_0R_2R_3$	$Q_0Q_1Q_2Q_3$	$Q_2Q_3Q_6Q_7$
4	$R_0R_2R_6$	$Q_0Q_2Q_4Q_6$	$Q_2Q_3Q_6Q_7$
5	$R_0R_4R_6$	$Q_0Q_2Q_4Q_6$	$Q_4Q_5Q_6Q_7$
6	$R_0R_4R_5$	$Q_0Q_1Q_4Q_5$	$Q_4Q_5Q_6Q_7$

Next we find equations for the six planes which bound the rotated cube, and display them here.

plane	equation
$Q_0Q_1Q_2Q_3$	$z = \sqrt{2} y$
$Q_0Q_1Q_4Q_5$	$z = \sqrt{3}/\sqrt{2} x - 1/\sqrt{2} y$
$Q_0Q_2Q_4Q_6$	$z = -\sqrt{3}/\sqrt{2}x - 1/\sqrt{2}y$
$Q_1Q_3Q_5Q_7$	$z = -\sqrt{3}/\sqrt{2} x - 1/\sqrt{2} y + \sqrt{3}$
$Q_2Q_3Q_6Q_7$	$z = \sqrt{3}/\sqrt{2} x - 1/\sqrt{2} y + \sqrt{3}$
$Q_4Q_5Q_6Q_7$	$z = \sqrt{2} y + \sqrt{3}$

Next we express the volume of the region in question as the sum of six triple (iterated) integrals as follows.

$$V(r) = \int_{-r/2}^{r/2} \int_{\sqrt{3}|y|}^{\sqrt{r^2 - y^2}} \int_{\sqrt{3}/\sqrt{2}}^{-\sqrt{3}/\sqrt{2}} \frac{1}{x - 1/\sqrt{2}y + \sqrt{3}} dz dx dy$$

$$+ \int_{0}^{\sqrt{3}/2} \int_{1/\sqrt{3}x}^{\sqrt{r^2 - x^2}} \int_{-\sqrt{2}/\sqrt{2}}^{-\sqrt{2}/2} \frac{1}{x - 1/\sqrt{2}y + \sqrt{3}} dz dy dx$$

$$+ \int_{-\sqrt{3}/2}^{0} \int_{-1/\sqrt{3}x}^{\sqrt{r^2 - x^2}} \int_{\sqrt{3}/\sqrt{2}x - 1/\sqrt{2}y + \sqrt{3}}^{\sqrt{3}/2} \frac{1}{x - 1/\sqrt{2}y + \sqrt{3}} dz dy dx$$

$$+ \int_{-r/2}^{r/2} \int_{-\sqrt{r^2 - y^2}}^{-\sqrt{3}|y|} \int_{-\sqrt{3}/\sqrt{2}x - 1/\sqrt{2}y}^{\sqrt{3}/2} \frac{1}{x - 1/\sqrt{2}y} dz dx dy$$

$$+ \int_{-\sqrt{3}/2}^{0} \int_{-\sqrt{r^2 - x^2}}^{1/\sqrt{3}x} \int_{-\sqrt{3}/\sqrt{2}x - 1/\sqrt{2}y}^{\sqrt{2}y + \sqrt{3}} dz dy dx$$

$$+ \int_{0}^{\sqrt{3}/2} \int_{-\sqrt{r^2 - x^2}}^{-1/\sqrt{3}x} \int_{\sqrt{3}/\sqrt{2}x - 1/\sqrt{2}y}^{\sqrt{2}y + \sqrt{3}} dz dy dx$$

$$+ \int_{0}^{\sqrt{3}/2} \int_{-\sqrt{r^2 - x^2}}^{-1/\sqrt{3}x} \int_{\sqrt{3}/\sqrt{2}x - 1/\sqrt{2}y}^{\sqrt{2}y + \sqrt{3}} dz dy dx$$

The proposer computed this sum using Mathematica, and obtained the following result.

$$V(r) = \sqrt{3} \pi r^2 - 2\sqrt{6} r^3$$

We observe that, as expected,

$$\lim_{r\to 0}\frac{V(r)}{\sqrt{3}\,\pi r^2}=1,$$

so that, again as expected, $r \approx 0 \ \Rightarrow \ V(r) \approx \sqrt{3} \, \pi r^2$.