Problem for 2016 April

Proposed by Dan Jurca
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Solution by the proposer

The limit equals 2/7. We shall need the following
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/ |sin(t?)] dt < ——.
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For t € [y/nm, \/(n + 1)7] let u = t? —nm; then du = 2t dt, so dt = du/(2t) = du/(2v/u + n). Therefore
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Hence
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Then since u € [0,7] = /n7 < Vu+nr < +/(n+ 1)7, with equality only at the endpoints, we have
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and the lemma follows since / sinu du = 2.
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The following sketch of (part of) the graph of | sin(#?)| shows how we use the lemma. (Here x = 6.)
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Now consider large x, say 3 < x. Let ng = [2?/7] and n; = |(z +1)?/m]. Then ng —1 < 2%/7 < ng, so that

V(no— )m <z < /nom; and ny < (z +1)?/7 < ny + 1, so that \/nim <z + 1 < \/(ny + 1)7. Therefore

there exist the following inclusion relations of intervals. (One checks that 7 —1/2 <2 = ng < n1.)

Vaor, i C [a,e+1] C [y(mo— D, /i + D]




Hence with f(¢) = | sin(¢?)| (and since 0 < f)
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Next
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Similarly, since
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and the limit in question follows from the “squeeze theorem”.

Remark. In fact, one can show (from the inequalities above) that
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Also solved by Jan van Delden (The Netherlands) and Winston Teitler (numerically)



