If \(S = \{ (x_1, y_1), (x_2, y_2), (x_3, y_3), \ldots, (x_n, y_n) \} \) is a set of \(n \) points in the plane, then the center of \(S \) is the point \[
\left(\frac{x_1 + x_2 + x_3 + \cdots + x_n}{n}, \frac{y_1 + y_2 + y_3 + \cdots + y_n}{n} \right).
\]

Suppose \(p(x, y) \) is a polynomial with real coefficients in two variables of degree \(n \), and
\[C = \{(x, y) \in \mathbb{R}^2 \mid p(x, y) = 0 \}. \]

Suppose \(\ell_1, \ell_2, \) and \(\ell_3 \) are three parallel lines in the plane, each of which intersects the curve \(C \) in exactly \(n \) points. Prove that the centers of these sets of intersection points lie on a single line; i.e., the centers of \(\ell_1 \cap C, \ell_2 \cap C, \) and \(\ell_3 \cap C \) lie on a line.

Solution by Dan Jurca

First suppose that each of the three parallel lines \(\ell_i \) is horizontal; and suppose an equation of \(\ell_i \) is \(y = y_i \) for some \(y_i \in \mathbb{R} \). There exist polynomials, say \(r_n(y) \) of degree \(< 1 \) and \(r_{n-1}(y) \) of degree \(< 2 \), such that
\[p(x, y) = r_n(y)x^n + r_{n-1}(y)x^{n-1} + \text{terms in } x \text{ of lower degree}. \]

For \(i = 1, 2, 3 \) let \(f_i(t) = p(t, y_i) \). Since \(\ell_i \) intersects the curve \(C \) in \(n \) points, say \((x_{i1}, y_i), (x_{i2}, y_i), \ldots, (x_{in}, y_i) \), it follows that for \(1 \leq j \leq n \) we have \(f_i(x_{ij}) = p(x_{ij}, y_i) = 0 \). Since \(r_n(y) \) is a real number, and since there exist \(n \) distinct real roots of \(f_i(t) = r_n(y_i)t^n + \cdots \), it follows that the degree of \(f_i(t) \) is at least \(n \). Therefore the degree of \(f_i(t) \) is exactly \(n \), so \(r_n(y_i) \neq 0 \), and it follows that \(r_n(y) \) is a nonzero real constant, say \(r \). Thus there exist \(r \in \mathbb{R}, r \neq 0 \), \(c_1 \in \mathbb{R} \), and \(c_0 \in \mathbb{R} \) such that
\[p(x, y) = nx^n + (c_1y + c_0)x^{n-1} + \cdots. \]

If \(S_i = \ell_i \cap C = \{(x_{i1}, y_i), (x_{i2}, y_i), \ldots, (x_{in}, y_i)\} \), the set of intersection points of the line \(\ell_i \) and the curve \(C \), then since \(p(x, y) = 0 \), we recall that for \(i = 1, 2, \) and \(3 \), and \(j = 1, 2, \ldots, n \):
\[f_i(x_{ij}) = 0. \]

Since \(f_i(t) \) is a polynomial of degree \(n \), it follows that the sum of the roots of \(f_i(t) \) equals \(-r_{n-1}(y_i)/r\). Therefore for \(i = 1, 2, \) and \(3 \) the center of the set \(S_i = \ell_i \cap C \) equals
\[\left(\frac{x_{i1} + x_{i2} + x_{i3} + \cdots + x_{in}}{n}, \frac{y_i + y_i + y_i + \cdots + y_i}{n} \right) = \left(\frac{-r_{n-1}(y_i)}{nr}, y_i \right) = \left(\frac{-c_1y_i - c_0}{nr}, y_i \right). \]

These three points are collinear if and only if the determinant of the following matrix equals zero.

\[
\begin{vmatrix}
-c_1y_1 - c_0 \\
-nr \\
-c_1y_2 - c_0 \\
-nr \\
-c_1y_3 - c_0 \\
-nr
\end{vmatrix}
\]

Adding \(c_1/nr \) times column 2 to column 1 one obtains the following matrix with the same determinant.

\[
\begin{vmatrix}
-c_0/nr \\
-nr \\
-c_0/nr \\
-nr \\
-c_0/nr \\
-nr
\end{vmatrix}
\]

and since column 1 equals a multiple of column 3, this matrix is in fact singular. Therefore the centers of \(S_1, S_2, \) and \(S_3 \) are collinear. (In fact these centers lie on the line with equation \(nx + c_1y + c_0 = 0 \).)

Next consider the case that the three lines \(\ell_i \) are vertical, and that an equation of line \(\ell_i \) is \(x = x_i \) for some \(x_i \in \mathbb{R}, i = 1, 2, \) and \(3 \). Here if \(p(x, y) = s_n(x)y^n + s_{n-1}(x)y^{n-1} + \cdots \), then one shows \(s_n(x) \) is a nonzero constant and \(s_{n-1}(x) \) is of degree \(\leq 1 \), so \(p(x, y) = sy^n + (d_1x + d_0)y^{n-1} + \cdots \). For \(i = 1, 2, \) and \(3 \) let \(g_i(t) = p(x_i, t) = st^n + (d_1x_i + d_0)t^{n-1} + \cdots \). Then \(g_i(t) = 0 \) iff \(p(x_i, t) = 0 \). If line \(\ell_i \) intersects the curve \(C \) in the points \((x_i, y_{ij}), j = 1, 2, \ldots, n \), then
\[g_i(y_{ij}) = p(x_i, y_{ij}) = 0, \text{ so that, as before, } y_{i1} + y_{i2} + \cdots + y_{in} = -(d_1x_i + d_0)/s. \]

Thus the center of \(\ell_i \cap C \) equals the following point.
\[
\left(\frac{x_i + x_i + \cdots + x_i}{n}, \frac{y_{i1} + y_{i2} + \cdots + y_{in}}{n} \right) = \left(x_i, -\frac{d_1x_i - d_0}{ns} \right)
\]

Again, as before, a certain determinant equals zero, so that these three points (the centers) are collinear.
Before considering the general case — the lines are neither horizontal nor vertical — we look at an example. In the following figure (a) the curve, an ellipse, is the set \(\{(x, y) \in \mathbb{R}^2 \mid p(x, y) = 0\} \), where

\[
p(x, y) = 16x^2 + 9y^2 - 144,
\]

and equations of the parallel lines are \(\ell_1 : y = \frac{1}{\sqrt{3}}x + 3 \), \(\ell_2 : y = \frac{1}{\sqrt{3}}x + 1 \), and \(\ell_3 : y = \frac{1}{\sqrt{3}}x - 2 \).

Thus each of the lines cuts the \(x \)-axis with angle of inclination \(\frac{\pi}{6} \) or \(30^\circ \). Figure (b) shows the result of rotating figure (a) through an angle of \(-\pi/6 \), or \(-30^\circ \); i.e., \(\pi/6 \) or \(30^\circ \) clockwise.

Here \(n = 2 \), and the points of intersection (of the lines \(\ell_i \) and the curve \(C \)) and the centers in figure (a) are as follows.

\[
S_1 = \ell_1 \cap C = \left\{ \left(\frac{-9\sqrt{3} \pm 12\sqrt{10}}{19}, \frac{48 \pm 4\sqrt{30}}{19} \right) \right\} \text{ so the center of } S_1 = \left(\frac{-9\sqrt{3}}{19}, \frac{48}{19} \right)
\]

\[
S_2 = \ell_2 \cap C = \left\{ \left(\frac{-3\sqrt{3} \pm 36\sqrt{2}}{19}, \frac{16 \pm 12\sqrt{6}}{19} \right) \right\} \text{ so the center of } S_2 = \left(\frac{-3\sqrt{3}}{19}, \frac{16}{19} \right)
\]

\[
S_3 = \ell_3 \cap C = \left\{ \left(\frac{3\sqrt{3} \pm 12\sqrt{15}}{19}, \frac{-32 \pm 12\sqrt{5}}{19} \right) \right\} \text{ so the center of } S_3 = \left(\frac{6\sqrt{3}}{19}, \frac{-32}{19} \right)
\]

These three centers lie on the line with equation \(y = -\frac{16}{3\sqrt{3}}x \).

Rotating the lines \(\ell_i \) and the curve \(C \) in figure (a) \(30^\circ \) clockwise results in the horizontal lines \(\ell'_i \) and the curve \(C' \) in figure (b), in which

\[
C' = \{(x, y) \in \mathbb{R}^2 \mid q(x, y) = 0\} \text{ where } q(x, y) = \frac{57x^2 - 14\sqrt{3}xy + 43y^2}{4} - 144,
\]

and equations of the horizontal lines \(\ell'_i \) are \(\ell'_1 : y = 3\sqrt{3}/2 \), \(\ell'_2 : y = \sqrt{3}/2 \), and \(\ell'_3 : y = -\sqrt{3} \). These lines (\(\ell'_1 \), \(\ell'_2 \), and \(\ell'_3 \)) intersect the curve \(C' \) as follows.

\[
S'_1 = \ell'_1 \cap C' = \left\{ \left(\frac{21 \pm 16\sqrt{30}}{38}, \frac{3\sqrt{3}}{2} \right) \right\} \text{ so the center of } S'_1 = \left(\frac{21}{38}, \frac{3\sqrt{3}}{2} \right)
\]

\[
S'_2 = \ell'_2 \cap C' = \left\{ \left(\frac{7 \pm 48\sqrt{6}}{38}, \frac{\sqrt{3}}{2} \right) \right\} \text{ so the center of } S'_2 = \left(\frac{7}{38}, \frac{\sqrt{3}}{2} \right)
\]

\[
S'_3 = \ell'_3 \cap C' = \left\{ \left(\frac{-7 \pm 24\sqrt{5}}{19}, -\sqrt{3} \right) \right\} \text{ so the center of } S'_3 = \left(\frac{-14}{38}, -\sqrt{3} \right)
\]

These three centers lie on the line with equation \(y = \frac{19\sqrt{3}}{7}x \), and this line and the one above — the line with slope \(-16/(3\sqrt{3})\) — intersect at the origin making an angle of \(30^\circ \).
Consider now the case in which the lines \(\ell_i \) are not vertical; let \(A \) be the following matrix.

\[
A = \begin{bmatrix}
1/\sqrt{m^2 + 1} & m/\sqrt{m^2 + 1} \\
-m/\sqrt{m^2 + 1} & 1/\sqrt{m^2 + 1}
\end{bmatrix}
\] if the slope of each line \(= m \in \mathbb{R} \)

Then for each vector \(\mathbf{x} \) (with initial point at the origin) in the plane, \(A\mathbf{x} \) is the vector \(\mathbf{x}' \) which is \(\mathbf{x} \) rotated \(\tan^{-1} m \) clockwise. That is, the linear transformation \(T_A : \mathbb{R}^2 \to \mathbb{R}^2 \) which (with respect to the standard bases of \(\mathbb{R}^2 \)) is represented by the matrix \(A \) achieves a rotation about the origin of coordinates of \(-\tan^{-1} m \). In the image \(T_A(\mathbb{R}^2) \) the lines \(\ell_i \) have been sent to horizontal lines, say \(\ell'_i \), and the curve \(C \) has been sent to, say, \(C' \). Since the matrix \(A \) is obviously orthogonal (\(A^T A = I_2 \)), \(T_A(\mathbb{R}^2) \) is congruent to \(\mathbb{R}^2 \), and since \((\text{by the argument above}) \) the centers of \(\ell'_i \cap C' \) are collinear, it follows that so also are the centers of \(\ell_i \cap C \).

Looking again at the previous example we have \(m = 1/\sqrt{3} \), so that in this case

\[
A = \begin{bmatrix}
\sqrt{3}/2 & 1/2 \\
-1/2 & \sqrt{3}/2
\end{bmatrix}.
\]

(One checks that \(A \begin{bmatrix} \sqrt{3} \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} \), so that the \(T_A \) in this case does in fact effect a rotation of \(30^\circ \) clockwise.)

Now we would like a polynomial \(q \) such that \(q(A\mathbf{x}) = 0 \) iff \(p(\mathbf{x}) = 0 \), so we define \(q \) by \(q(\mathbf{x}) = p(A^{-1}\mathbf{x}) \).

Thus, for example, with \(p(\mathbf{x}) = p(x, y) = 16x^2 + 9y^2 - 144 \), we have

\[
q(x, y) = 16 \left(\frac{\sqrt{3}}{2} x - \frac{1}{2} y \right)^2 + 9 \left(\frac{1}{2} x + \frac{\sqrt{3}}{2} y \right)^2 - 144,
\]

\[
= \frac{57x^2 - 14\sqrt{3}xy + 43y^2}{4} - 144
\]
as sketched above. Similarly the rotated lines \(\ell'_i \) are as follows.

\(\ell_1: y = \frac{1}{\sqrt{3}} x + 3 \) becomes \(\frac{1}{2} x + \frac{\sqrt{3}}{2} y = \frac{1}{\sqrt{3}} \left(\frac{\sqrt{3}}{2} x - \frac{1}{2} y \right) + 3 \) or

\[
\frac{1}{2} x + \frac{\sqrt{3}}{2} y = \frac{1}{2} x - \frac{1}{2\sqrt{3}} y + 3,
\]

which simplifies to

\[
y = \frac{3\sqrt{3}}{2},
\]

an equation of a horizontal line \(\ell'_1 \).

Similarly

\(\ell_2: y = \frac{1}{\sqrt{3}} x + 1 \) becomes \(\ell'_2: y = \frac{\sqrt{3}}{2} \)

\(\ell_3: y = \frac{1}{\sqrt{3}} x - 2 \) becomes \(\ell'_3: y = -\sqrt{3} \).

Thus the lines with slope \(1/\sqrt{3} \) become horizontal lines in the rotated plane.

Finally, if \(C' = \{(x, y) \in \mathbb{R}^2 \mid q(x, y) = 0\} \), then, as shown above, the centers of \(\ell'_i \cap C' \), \(i = 1, 2, \) and \(3 \), lie on a line; and since \(T_A \) maps \(\mathbb{R}^2 \) onto itself orthogonally, the centers of \(\ell_i \cap C \) also lie on a line, as shown in the sketch.

Remark. One sees that there is nothing special about the number 3 in this problem (except that the assertion is trivial if there are fewer than three lines). That is, if \(p(x, y) \) is a polynomial of degree \(n \) and \(S = \{\ell_\alpha \mid \alpha \in \mathcal{A}\} \) is a set of parallel lines each of which intersects \(C = \{(x, y) \in \mathbb{R}^2 \mid p(x, y) = 0\} \) in exactly \(n \) points, then the centers of \(\ell_\alpha \cap C \), \(\alpha \in \mathcal{A} \), are collinear.