1) Consider the implementation of a closed hash table $a[0]..a[n-1]$ to store distinct positive integers, using quadratic probing to resolve collisions. A value of 0 indicates that a hash table location is currently unused. The hash function is $h(x) = x \mod n$.

Write a function that searches the table for a given integer x. If found, the function returns the index of where x exists in the table. Return -1 if x is not found in the table. The average runtime of your routine should be according to the usual hashing standards.

2) Consider an ordered linked list with n entries in ascending order. Each entry has 2 components: a key component of type int and the usual next link component.
 a) Write a function to insert a new entry with key x into its proper place. Note that a key may be added as the new first or last entry in the list, and so there are $n+1$ locations where x could be inserted.
 b) Assume that each of the $n+1$ possibilities is equally likely. Determine the average number of times ints are compared in the above insertion algorithm. Your answer should be a precise function of n. An asymptotic answer (such as one that uses big-oh, big-theta, etc.) is not acceptable.
3) For each function with input argument \(n \), determine the asymptotic number of “fundamental operations” that will be executed. Note that \(f_d \) is recursive. Choose each answer from among the following. You do not need to explain your choices.

\[\Theta(1) \quad \Theta(\log n) \quad \Theta(n) \quad \Theta(n \log n) \quad \Theta(n^2) \quad \Theta(n^2 \log n) \quad \Theta(n^3) \quad \Theta(2^n) \quad \Theta(n!) \]

a)
void fa(int n) {
 for(k = 1; k < n; k++)
 for(i = k+1; i <= n; i++)
 for (j = k+1; j <= n; j++)
 Perform 1 fundamental operation;
 //endfor j
 //endfor i
 //endfor k
}

b)
void fb(int n) {
 for(i = 1; i <= n; i = 2*i)
 Perform 1 fundamental operation;
 //endfor i
}

c)
void fc(int n) {
 for(i = n; i > 0; i = i-2)
 Perform 1 fundamental operation;
 //endfor i
}

d)
void fd(int n) {
 if (n > 1) {
 fd(n/3);
 fd(n/3);
 fd(n/3);
 Perform n fundamental operations;
 }//endif
 }
Answer **ANY TWO** of the following three questions:

1. Give a context-free grammar generating the following language over $\Sigma = \{0, 1\}$:

$$\{0^m1^n0^k : k \geq m; m, n, k \geq 0\}$$

2. A Hamiltonian circuit in an undirected graph is a cycle that visits each node exactly once. A cycle in a graph is a non-empty path in which the only repeated node is the first and last.

Consider the following problem:

$$\text{HAMCIRCUIT} = \{V, E : G = (V,E) \text{ is an undirected graph containing a Hamiltonian circuit}\}$$

Show that $\text{HAMCIRCUIT} \in \text{NP}$.

3. Answer **TRUE** or **FALSE** for each of the following statements to indicate whether the conclusion is always true. If you do not know the answer, do not guess.

Scoring: +2 points for correct answer; 0 point for no answer; -1 point for wrong answer.

a. If $A \leq_p B$ and $B \in \text{co-NP}$, then $A \in \text{NP}$.

b. If $A \leq_p B$ and $A \in \text{NP-Complete}$, then $B \in \text{NP-hard}$.

c. If $A \leq B$ and B is not decidable, then A is not acceptable.

d. If $A \leq B$ and $B \in \text{P}$, then A is acceptable.

e. If $A \leq_p B$ is $B \in \text{NP}$, then $A \in \text{EXPTIME}$.

f. If $A \leq_p B$ and $B \in \text{NP-Complete}$, then $A \in \text{P}$.

g. If $A \leq_p B$ is and B is decidable, then A is decidable.

h. If $A \leq_p B$ and $B \in \text{NP-Complete}$, then $A \in \text{NP-Complete}$.

i. If $A \leq B$ and B is co-acceptable, then A is co-acceptable.

j. If $A \leq B$ and A is not co-acceptable, then B is not decidable.
SYSTEMS EXAM
Fall 2019
90 minutes

Check which problems you are submitting:

☐ #1
☐ #2
☐ #3

How many pages total? ________
Please do not write on the back of any pages.

__
(print name)

__
(signature)

__
(NetId)
Problem #1

a) (4pts) List the four conditions of deadlock:

b) (16pts) Below is a semaphore solution for the producer/consumer problem. The buffer can hold \(n \) items. Semaphores are \(X, Y, \) and \(Z \).

// The buffer is initialized to be empty and is processed as a first in first out queue

// PRODUCER CODE
while (true)
{
 1. getItem();
 2. wait(X);
 3. wait(Z);
 4. addItemToBuffer();
 5. signal(Z);
 6. signal(Y);
}

// CONSUMER CODE
while(true)
{
 1. wait(Y);
 2. wait(Z);
 3. readItemFromBuffer();
 4. signal(Z);
 5. signal(X);
 6. processItem();
}

There is a problem with each of the semaphore initializations below. **Give a sequence of statements showing how an error might occur.**

For instance, can the Producer and Consumer be in their critical sections at the same time? Will deadlock occur?
Please note, for full credit, you must you must list a sequence of statements that lead to an error. You will not get credit for guessing.

1) X = 0, Y = 0, Z = 1
2) X = n, Y = 0, Z = 0
3) X = n, Y = 0, Z = 2
4) X = 0, Y = n, Z = 1

Problem #2 Resource Allocation Banker’s algorithm

(3pts) What is meant by a “safe state?”

(14pts) Show a safe state process sequence for the following:

Resources: X, Y, Z where available is X = 11, Y = 7, Z = 7

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>P1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>P2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>P3</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

(3pts) If a P2 asks for (3,2,4) can it be granted? Why or why not?
#3 Memory Management Paging

a) (4pts) Given a 3 level page table with a Translation Lookaside Buffer (TLB) hit ratio of 95%, What is the effective access time given that a TLB access is 75ns and a memory access time is 100ns?

b) (4pts) Assume a 32 bit logical address space and 3 level paging system. The first 12 bits are for the 1st level page table, the next 8 bits are for the 2nd level page table, the next 6 bits are for the 3rd level page table and remaining 6 are for the offset. How much virtual memory can be accessed?

c) (12pts) Which page replacement strategy will work best with the following page references assuming there are 4 page frames? FIFO or LRU. Work must be shown for credit. Please show your work.

Assume no pages are currently in the frames

Reference sequence 1 2 3 4 1 2 5 1 2 3 4 5