CS 692 Capstone Exam Algorithms Fall 2020: Choose any 2 of the 3 problems.

1) A “full node” in a binary tree has either no children or exactly 2 children. Given a binary tree, write a function that returns true if all nodes are full nodes. Otherwise return false.
Notes: The function should have just one argument, a pointer to the root.
 No global variables may be used.
 No additional functions may be defined.

2) For each function with input argument n, determine the asymptotic number of “fundamental operations” that will be executed. Note that f_c is recursive. Choose each answer from among the following. You do not need to explain your choices.
\[\Theta(1) \quad \Theta(\log n) \quad \Theta(n) \quad \Theta(n \log n) \quad \Theta(n^2) \quad \Theta(n^2 \log n) \quad \Theta(n^3) \quad \Theta(2^n) \quad \Theta(n!) \]

a) void fa(int n) {
 for(i = 1; i < n; i++) {
 for(j = i; j <= n; j++)
 Perform 1 fundamental operation;
 }
 for(k = 1; k <= n; k++)
 Perform 1 fundamental operation;
}

b) void fb(int n) {
 for(i = 1; i <= n; i = 3*i)
 Perform 1 fundamental operation;
}

c) void fc(int n) {
 if (n > 1) {
 fc(n/2);
 fc(n/2);
 Perform 1 fundamental operation;
 }
}

d) For part d), a fundamental operation will be a comparison of array element types.

void hybrid_sort(element a[], int n){
 // Put a[0]..a[n-1] into ascending order.
 if (n < 100)
 Perform selection sort;
 else
 Perform mergesort;
}

3) Solve the recurrence relation $T(n) = T(n/2) + 3n$ where $T(1) = 0$ and $n = 2^k$
for a nonnegative integer k. Your answer should be a precise function of n in closed form (i.e.,
resolve all sigmas and ...’s). An asymptotic answer is not acceptable. Justify your solution.