Choose any 2 of the 3 problems.
If you answer all three questions, only questions 1 and 2 will be graded.

Full name: ___________________ Net ID:_______________

Question 1) (20 points)
Consider the following recurrence relations. Express each in Big-O(). Show all your work. You can use the Master Theorem (if applicable) or any other technique. \(T(1)=1 \) in all the cases. (5 points each)

A) \(T(n) = T(n/2) + 3n \)

B) \(T(n)= 2T(n/2)+ n \log n \)

C) \(T(n)=9T(n/3)+ O(1) \)

D) \(T(n)=T(n-1)+ 1 \)
Question 2) (20 points)

Part 1) (12 points) Take the following list of functions and arrange them in ascending order of growth rate. That is, if function $g(n)$ immediately follows function $f(n)$ in your arrangement, then it should be the case that $f(n)$ is $O(g(n))$. No justification is needed.

- $f_1(n) = 2^n$
- $f_2(n) = n^4$
- $f_3(n) = n$
- $f_4(n) = 100^n$
- $f_5(n) = n \log n^4$
- $f_6(n) = \log n$
- $f_7(n) = n^5$
- $f_8(n) = n!$

Part 2) (4 points each) Let two functions $f(n)$ and $g(n)$ reflect the total number of basic operations in two algorithms A_1 and A_2, respectively.

A) Assume $f(n) = \text{little-o}(g(n))$. What will be the result of $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \, ?$ Justify your answer in at most 5 sentences. Be precise.

B) Assume $f(n) = \text{Big-O}(g(n))$. What will be the result of $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \, ?$ No justification is needed here.
Question 3) (C/C++ coding question) (20 points)
Consider two binary trees T_1 and T_2. Assume nodes in both trees are labeled with integer numbers.

Definition: We say two nodes in trees T_1 and T_2 overlap if the node in T_1 is in the same position (same level and being left or right) as the node in T_2.

For example, in the below figure, the node $v \in T_1$ overlaps with the node $v' \in T_2$, and the node $u \in T_1$ overlaps with $u' \in T_2$. However, the node $w \in T_1$ does not overlap with any node in T_2. Also, the node $x' \in T_2$ does not overlap with any node in tree T_1.

![Diagram](image)

Write a **recursive** Magic function that receives pointers to the roots of trees T_1 and T_2 and returns a pointer to the root of a newly constructed tree, called T_3, where the nodes in T_3 are going to be constructed as follows:

1) If two nodes in trees T_1 and T_2 overlap, the product of their labels will make the label for the corresponding node in tree T_3.

2) Otherwise, the non-null node label will be used for labeling the node in tree T_3.

For example, let tree T_1 and T_2 be as follows:

![Diagram](image)
The new tree T_3 will look like this:

Again, the input to the function is a pointer to the root of (possibly empty) tree T_1 and a pointer to the root of (possibly empty) tree T_2 and it returns a pointer to the root of tree T_3.

All trees should be implemented using **singly linked lists**.

A) **(4 points)** Declare your data structure.

B) **(10 points)** Write a C/C++ code for the Magic function as described above (a non-recursive function will receive 0 points. Code only in C or C++).

C) **(6 points)** Analyze the time complexity of your Magic function in the worst case, assuming that tree T_1 has n_1 nodes and tree T_2 has n_2 nodes. Explain your answer.