CS 692 Algorithms Capstone Exam, Fall 2025

Choose any 2 of the 3 problems.
If you answer all three questions, only questions 1 and 2 will be graded.

Full name: Net ID:

Question 1)

Part A) (14 points) Consider the following recurrence relations and solve each to come up with a
precise function of n in closed form (that means you should resolve all sigmas, recursive calls of
the function T, etc.). An asymptotic answer is NOT acceptable. Justify your solution and show
all your work.

a) T(n)=T(n-1)+ 5, where T(1) =1
b) T(n)=2 T(%) +n, where T(1) =1 and n = 2* for a non-negative integer k
Part B) (6 points) Consider the following recurrence relation. Determine its asymptotic

complexity in Big-O notation. You may apply the Master Theorem or any other valid method of
your choice. Clearly explain your reasoning and provide the final result in O() notation.

a) T(n)= 4T(§) +20n?, where T(1) =1



Full name: Net ID:

Question 2)
Part A) (12 points) For each function f(n) below, give an asymptotic upper bound using “Big-
O(”. You should give the tightest bound possible. No need to justify your answer.

(1) f(n)=n>+nlogn

(2) f(n)=n'" + n!

3)
n3 + 20n, n<12
f(n)= 3n+ 5, n>12 andnis odd
45n? + 20, n > 12 and nis even

(4) f(n)= "+ 27+ 10'°

Part B) (8 points)
Let f(n) and g(n) be two functions representing algorithmic runtimes. The growth rate of f(n)
compared to g(n) can be analyzed using the limit below. Analyze the behavior of the limit

lim m
ne g (1)

in each of the following cases.
a) f(n) € o(g(n)) (little-o of g(n))
b) f(n) € O(g(n)) (Big-O of g(n))

Then, compare your findings for case (a) and case (b), discussing their similarities and
differences.



Full name: Net ID:

Question 3) (20 points)
1) (4 points) Define a stack data structure and specify its properties.
2) (16 points) Implement (in C/C++ only) a stack of integers using a singly linked list.
Declare the data structure and provide code for the following operations:
a) empty_check: this operation checks whether the stack is empty.
b) push: inserts an element into the stack.
c) pop: removes and returns the top element of the stack.
d) find_max: returns the maximum value in the stack without altering its contents. All
elements must remain in the stack in their original order, and the operation must not
modify the stack in any way.

Important Notes:

1. Only C or C++ implementations will be accepted. Submissions in any other language will
receive no credit.

2. You must use a singly linked list with pointers for your implementation.

You are not permitted to use built-in libraries or pre-existing routines that perform stack

operations. All functionalities must be implemented from scratch.

(98]



