

Choose any 2 of the 3 problems.
If you answer all three questions, only questions 1 and 2 will be graded.

Full name: _____

Net ID: _____

Question 1) (20 points) Let $\Sigma = \{a, b\}$. Consider the following NFA. Note that state q_0 is connected to q_1 via an ε -move (epsilon-move).

Construct a **DFA** equivalent to the NFA provided above. Show all your work and explain how you constructed the DFA. Present your final answer as a **state diagram**.

- Be sure to present your final answer as a **state diagram**, as no credit will be given for other forms of representation, including the transition table.
- Note that unclear drawings of any kind will not be awarded points.

Full name: _____

Net ID: _____

Question 2) Provide a **context-free grammar** for each of the following languages. In all cases $\Sigma = \{0,1\}$. **(10 points each)**

a. $L = \{w \mid w = w^R \text{ and } |w| \text{ could be either odd or even}\}$, where $w = w^R$ means w is palindrome (reads the same forward and backward).

b. $L = \{0^{3n} 1^n \mid n \geq 0\}$ (Here, **3n** is the exponent representing the number of **0**'s, and **n** is the exponent representing the number of **1**'s.)

Full name: _____

Net ID: _____

Question 3) Answer the following questions. Please explain each answer clearly and in detail. **(10 points each)**

a) Consider the *Vertex Cover (VC)* problem defined as follows:

A *vertex-cover* of an undirected graph $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ is a subset $\mathbf{V}' \subseteq \mathbf{V}$, such that for every edge $(\mathbf{u}, \mathbf{v}) \in \mathbf{E}$, at least one of \mathbf{u} or \mathbf{v} belongs to \mathbf{V}' .

Formally,

$$\mathbf{VC} = \{(G, k) \mid G = (V, E) \text{ is an undirected graph that has a vertex-cover of size } k\}.$$

Prove that Vertex Cover (VC) belongs to the complexity class **NP**. (*You are only asked to show $VC \in NP$. You do not need to prove NP-completeness.*)

b) In general, how do you prove that a decision problem X is NP-complete?
State the standard steps of such a proof and explain.