

Full name: _____ **Net ID:** _____

Instructions (read before starting). Please avoid asking about items covered below.

- 1) You can write your answers on both sides of the paper. If you run out of space on the first page, continue your answer on the back of the page.
- 2) You may use the last paper sheet (front and back) as scratch paper. It is also marked as scratch paper. Please note that the instructor will **NOT** grade the scratch paper. The scratch sheet stays with the exam. Please do not detach it.
- 3) Do **NOT** detach the exam sheets. If at any point the papers get detached, raise your hand and request that they be stapled immediately.
- 4) You are **NOT** allowed to use a calculator.
- 5) You are **NOT** allowed to have your cell phone, e-watch, or other electronic devices nearby (on the desk or inside your pocket). They should be turned off and stay inside your bag/backpack which will be placed in the front/back of the room.
- 6) Exam duration: 3:00–4:30 pm.

Choose two of the three questions. Please indicate *which two* you want graded (if not indicated, the first two attempted will be graded):

	Question #1	Question #2	Question #3
Select (check two):	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>

Full name: _____

Net ID: _____

1. (20 points) Suppose we have the following page accesses: 3 4 2 6 4 3 7 4 3 6 3 4 8 4 6 and that there are three frames within our system. (Detailed steps are required)
 - (a) (10 points) Using the FIFO replacement algorithm, what is the number of page faults for the given reference string?
 - (b) (10 points) Using the LRU replacement algorithm, what is the number of page faults for the given reference string?

Full name: _____

Net ID: _____

2. (20 points) Banker's Algorithm

	Allocation				Max				Available			
	A	B	C	D	A	B	C	D	A	B	C	D
P0	4	0	0	1	6	0	1	2				
P1	1	1	0	0	1	7	5	0				
P2	1	2	5	4	2	3	5	6				
P3	0	6	3	3	1	6	5	3				
P4	0	2	1	2	1	6	5	6	3	2	1	1

(a) (5 points) What is meant by a “safe state?”

(b) (7 points) Draw the Need Matrix

(c) (8 points) Is the system in safe state? If yes, show a safe state process sequence. If no, explain why.

Full name: _____

Net ID: _____

3. (20 points) Consider the following pseudo-code for the **Producer–Consumer problem** using semaphores mutex = 1, empty=N, full=0:

Listing 1: Producer

```
// Producer
while (true) {
    item = produce_item();
    wait(empty);
    wait(mutex);
    insert_item(item);
    signal(mutex);
    signal(full);
}
```

Listing 2: Consumer

```
// Consumer
while (true) {
    wait(full);
    wait(mutex);
    item = remove_item();
    signal(mutex);
    signal(empty);
    consume_item(item);
}
```

(a) (5 points) Explain how **mutual exclusion** is enforced in this solution.

(b) (7 points) Could **deadlock** occur in this system? Why or why not?

(c) (8 points) What would happen if the order of the **wait** operations in the producer were reversed (i.e., `wait(mutex)` before `wait(empty)`)?

Scratch Paper

This page (front and back) is for scratch work only. It will not be graded and should remain attached to the exam.