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Introduction

Plant-associated microbiomes play a critical role in plant health, productivity,
and ecosystem function by regulating nutrient cycling, stress responses, and
host—microbe interactions. Precise characterization of these microbial
communities 1s therefore essential for advancing our understanding of plant
biology and for informing sustainable agricultural and conservation practices.

Despite significant methodological progress, accurate profiling of plant
microbiomes remains technically challenging. One of the primary obstacles 1s
host-derived DNA contamination, particularly from chloroplast and
mitochondrial 16S rRNA sequences, which are frequently co-amplified by
universal bacterial primers and can dominate amplicon libraries (1). This
off-target amplification substantially reduces effective sequencing depth and
obscures bacterial community signals. In addition, primer bias and the inherent
limitations of short-read sequencing can further distort estimates of microbial
diversity and relative abundance, complicating biological interpretation and
comparisons across studies.

Long-read sequencing platforms such as Oxford Nanopore Technologies (ONT)
enable recovery of full-length 16S rRNA gene sequences, offering improved
taxonomic resolution and reduced ambiguity relative to short-amplicon
approaches (2). However, the effective application of ONT sequencing to plant
microbiome studies requires careful optimization of experimental and
computational parameters, including primer selection, bioinformatic pipelines,
error-correction strategies, and host DNA suppression methods such as
chloroplast blockers, all of which strongly influence sequencing accuracy,
throughput, and cost-efficiency.

In this study, we systematically evaluate and optimize an ONT-based full-length
16S rRNA sequencing workflow for plant microbiome characterization. By
benchmarking bioinformatic pipelines (EMU (4) vs. ONT pipeline (5)) using a
defined mock community, testing multiple primer sets, implementing a
UMI-based error-correction approach (3), and empirically optimizing
chloroplast blocker (pCNA) concentrations using qPCR, we aim to establish a
high-throughput, cost-efficient, and accurate protocol suitable for large-scale
plant microbiome studies.

Methodology

Section 1: Comparing Primers and Bioinformatic Pipelines
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Section 2: Testing Chloroplast Blocker
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Results

Section 1: Comparing Primers and Bioinformatic Pipelines
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Compares genus-level relative abundance profiles generated by two bioinformatic pipelines, EMU and ONT, across five technical replicates
and a control. Each bar represents the proportional composition of bacterial genera within a replicate, allowing direct visual comparison of
taxonomic consistency, variation among replicates, and differences in genus assignment between the two pipelines, including the presence of
“others” and “unknown” categories.
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The percent difference in species-level relative abundance compared to the control across three primer sets (16S, pb, and pub). Each point
represents an individual replicate, highlighting primer-dependent biases and variability in abundance estimates for each bacterial species
relative to the control sample.

Section 2: Testing Chloroplast Blocker

qPCR Ct Value of Chloroplast Blocker at Different Concentration
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gPCR Ct values across a gradient of chloroplast blocker concentrations, including no-blocker and no-DNA controls. Increasing blocker
concentration generally results in higher Ct values, indicating effective suppression of chloroplast amplification, while controls validate assay
specificity and background amplification levels.

Propotion of Chloroplast Product from 16s PCR Reaction
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the proportion of chloroplast-derived amplicons from 16S PCR reactions under four experimental conditions. A: adding chloroplast blocker at
1st PCR reaction; B: adding chloroplast blocker at 2nd PCR reaction; C: adding chloroplast blocker to both reaction; D: no chloroplast blocker
added. Error bars indicate variability across replicates, highlighting differences in chloroplast amplification efficiency among conditions and
the effectiveness of strategies to reduce host chloroplast contamination.

Conclusion

In this study, we developed and validated an optimized long-read 16S rRNA
sequencing workflow for plant microbiome profiling that integrates primer
evaluation, bioinformatic benchmarking, UMI-based error correction, and
chloroplast blocker optimization. Using a defined mock community, we
demonstrate that full-length 16S sequencing on the Oxford Nanopore platform
can achieve improved taxonomic resolution while maintaining consistent
genus- and species-level abundance estimates across pipelines and primer sets
by using the EMU pipeline.

We further show that implementing a chloroplast blocker step 1s critical for
plant-associated microbiome studies, as host-derived chloroplast DNA can
otherwise dominate amplicon libraries, obscuring bacterial community signals.
qPCR-based optimization revealed a concentration-dependent suppression of
chloroplast amplification, highlighting the need for empirical calibration to
balance effective host DNA reduction with preservation of bacterial
amplification. Our results also indicate that the optimization of the timing of
chloroplast blocker application can influence blocking efficiency and
downstream community composition.

Taken together, these findings demonstrate that accurate and cost-effective
plant microbiome profiling using long-read 16S sequencing requires an
integrated experimental and computational framework. By combining
optimized chloroplast blocker concentration, UMI-based error correction, and
carefully selected primers and analysis pipelines, the workflow presented here
enables high-throughput, high-resolution characterization of plant-associated
microbial communities. This approach provides a robust foundation for future
studies 1n plant health, agriculture, and conservation biology, where precise
microbial profiling 1s essential for understanding host—microbe interactions
and ecosystem function.
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