Directions:

- You will answer FOUR questions.
- You MUST choose at least ONE question from each class (one from Math 620, one from Math 630, and one from Math 670).
- The fourth question can come from any of the classes.

Time: 2.5 hours

Math 620

- 1. Let G be a group. Prove that G is abelian if and only if the map $\phi: G \to G$ defined via $\phi(g) = g^{-1}$ is a group automorphism.
- 2. Let R be an integral domain. Prove that for a in $R, \langle a \rangle = R$ if and only if a is a unit.

Math 630

- 3. Consider the sequence of functions $f_n(x) = x^{2n}$.
 - (a) Prove that the sequence converges uniformly on $\left[0,\frac{1}{2}\right]$.
 - (b) Prove that the sequence of functions does NOT converge uniformly on [0, 1].
- 4. Let $M = \{m, a, t, h\}$ and let d be the discrete metric.
 - (a) Prove, directly from the definition, that $A = \{a\}$ is open in M.
 - (b) Prove that (M, d) is complete.

Please turn over \Longrightarrow

Math 670

- 5. Consider the equation $e^x = 3 (x 1)^2$
 - (a) Prove that the equation has exactly two solutions.
 - (b) Choose of the of two solutions. Use Newton's Method to find an approximation with an absolute error of less than 10^{-6} . Note: for this problem, you may not use any graphing or root finding capabilities on your calculator.
- 6. Given that the eigenvalues of the 1-dimensional Laplace matrix

$$\begin{pmatrix}
2 & -1 & 0 & 0 & \dots & \dots & 0 \\
-1 & 2 & -1 & 0 & \dots & \dots & 0 \\
0 & \ddots & \ddots & \ddots & 0 & \dots & 0 \\
0 & 0 & \ddots & \ddots & \ddots & 0 & 0 \\
\vdots & & \ddots & \ddots & \ddots & 0 \\
\vdots & & & 0 & -1 & 2 & -1 \\
0 & & & 0 & 0 & -1 & 2
\end{pmatrix}$$

are all on the interval (0,4),

(a) Prove that $\rho(FE) < 1$ for $0 < \mu < \frac{1}{2}$ where FE is the tridiagonal Forward Euler matrix

$$\begin{pmatrix} 1 - 2\mu & \mu & & & & \\ \mu & 1 - 2\mu & \mu & & & & \\ & \ddots & \ddots & \ddots & & & \\ & & \mu & 1 - 2\mu & \mu & \\ & & \mu & 1 - 2\mu & \end{pmatrix}$$

(b) Prove that $\rho((BE)^{-1}) < 1$ for all $\mu > 0$ where BE is the tridiagonal Backward Euler matrix

$$\begin{pmatrix} 1+2\mu & -\mu & & & & & \\ -\mu & 1+2\mu & -\mu & & & & \\ & \ddots & \ddots & \ddots & & \\ & & -\mu & 1+2\mu & -\mu & \\ & & & -\mu & 1+2\mu & \end{pmatrix}$$

Note that $\rho(A)$ is the spectral radius of A.

Directions: You will answer THREE questions from a total of four questions, posed from two classes.

Time: 2 hours

Math 640: Complex Analysis

- 1. Let D be an open connected subset of \mathbb{C} and let $f: D \to \mathbb{C}$ be analytic in D. Prove that if \overline{f} is analytic in D then f is constant in D.
- 2. Prove: If f is analytic within and on a simple closed contour Γ , and z_0 is not on Γ , then

$$\int_{z\in\Gamma} \frac{f(z)}{(z-z_0)^2} dz = \int_{z\in\Gamma} \frac{f'(z)}{z-z_0} dz$$

Directions: You will answer THREE questions from a total of four questions, posed from two classes.

Time: 2 hours

Math 660: Topology

- 3. Let X be a Hausdorff space and $f: X \to X$ be a continuous function. Prove: $F = \{x \in X : f(x) = x\}$ is closed in X.
- 4. Let A and B be disjoint compact subspaces of a Hausdorff space X. Prove: There exist disjoint open subsets U and V of X such that $A \subseteq U$ and $B \subseteq V$.

(Recall: For any compact subspace Y of a Hausdorff space X and each point x_0 of X not in Y, there exist disjoint open neighborhoods of x_0 and Y.)

Directions: You will answer THREE questions from a total of four questions, posed from two classes.

Time: 2 hours

Math 675: Differential Equations

5. Consider the following differential equation

$$(x^2 - 1)y'' + xy' - y = 0$$

- (a) Find the recursion relation for the series solution centered at $x_0 = 0$.
- (b) Find the first six non-zero terms of the series solution centered at $x_0 = 0$. Write your final answer in terms of the coefficients a_0 and a_1 .
- 6. Consider the system of differential equations given by

$$\mathbf{x}' = \left(\begin{array}{cc} 0 & 2 \\ -1 & 3 \end{array}\right) \mathbf{x}$$

- (a) What is the general solution to the homogeneous differential equation above?
- (b) What is the general solution to the inhomogeneous system:

$$\mathbf{x}' = \begin{pmatrix} 0 & 2 \\ -1 & 3 \end{pmatrix} \mathbf{x} + \begin{pmatrix} e^t \\ -e^t \end{pmatrix}.$$

Simplify your answer.

Directions: You will answer THREE questions from a total of four questions, posed from two classes.

Time: 2 hours

Math 680: Optimization

7. Solve the following problem using the Simplex method. Clearly show the set up of the problem, the Simplex tableau, and the solution.

maximize
$$6x_1 + 9x_2 + 10x_3$$

subject to $3x_1 + 2x_2 - 6x_3 \le 24$
 $x_1 + 5x_2 + 2x_3 \le 18$
 $3x_1 + 3x_2 + 4x_3 = 24$
 $x_1, x_2, x_3 \ge 0$

8. Consider the problem

The first and last tableau are shown below.

	x_1	x_2	x_3	x_4	x_5	x_6	b
x_4	2	-3	2	1	0	0	26
x_5	-3	1	4	0	1	0	24
x_6	3	2	-2	0	0	1	30
	-4	-8	-3	0	0	0	0
x_1	1	0	0	$\frac{5}{28}$	$\frac{1}{28}$	$\frac{1}{4}$	13
x_3	0	0	1	$\frac{9}{56}$	$\frac{13}{56}$	$\frac{1}{8}$	$\frac{27}{2}$
x_2	0	1	0	$-\frac{3}{28}$	$\frac{5}{28}$	$\frac{1}{4}$	9
	0	0	0	$\frac{19}{56}$	$\frac{127}{56}$	$\frac{27}{8}$	$\frac{329}{2}$

Use sensitivity analysis to answer the questions below. For each situation, return to the original problem as given.

- (a) How much can c_2 , the coefficient of x_2 , change in the objective function and not change the solution of $(x_1, x_2, x_3) = (13, 9, \frac{27}{2})$?
- (b) What would be the new solution if the following constraint is added to the system?

$$x_1 - 2x_2 + 3x_3 \le 12$$