Department of Mathematics
 Comprehensive Examination
 2019 Fall Semester Part 1: Core Classes

Directions:

- You will answer FOUR questions.
- You MUST choose at least ONE question from each class (one from Math 620, one from Math 630, and one from Math 670).
- The fourth question can come from any of the classes.

Time: 2.5 hours

Math 620

1. Let G be a group. Prove that G is abelian if and only if the map $\phi: G \rightarrow G$ defined via $\phi(g)=g^{-1}$ is a group automorphism.
2. Let R be an integral domain. Prove that for a in $R,\langle a\rangle=R$ if and only if a is a unit.

Math 630

3. Consider the sequence of functions $f_{n}(x)=x^{2 n}$.
(a) Prove that the sequence converges uniformly on $\left[0, \frac{1}{2}\right]$.
(b) Prove that the sequence of functions does NOT converge uniformly on $[0,1]$.
4. Let $M=\{m, a, t, h\}$ and let d be the discrete metric.
(a) Prove, directly from the definition, that $A=\{a\}$ is open in M.
(b) Prove that (M, d) is complete.

Math 670

5. Consider the equation $e^{x}=3-(x-1)^{2}$
(a) Prove that the equation has exactly two solutions.
(b) Choose of the of two solutions. Use Newton's Method to find an approximation with an absolute error of less than 10^{-6}. Note: for this problem, you may not use any graphing or root finding capabilities on your calculator.
6. Given that the eigenvalues of the 1-dimensional Laplace matrix

$$
\left(\begin{array}{rrrrrrr}
2 & -1 & 0 & 0 & \ldots & \ldots & 0 \\
-1 & 2 & -1 & 0 & \ldots & \ldots & 0 \\
0 & \ddots & \ddots & \ddots & 0 & \ldots & 0 \\
0 & 0 & \cdot & \cdot & . & 0 & 0 \\
\vdots & & & \ddots & \ddots & \ddots & 0 \\
\vdots & & & 0 & -1 & 2 & -1 \\
0 & & & 0 & 0 & -1 & 2
\end{array}\right)
$$

are all on the interval $(0,4)$,
(a) Prove that $\rho(F E)<1$ for $0<\mu<\frac{1}{2}$ where FE is the tridiagonal Forward Euler matrix

$$
\left(\begin{array}{cccccc}
1-2 \mu & \mu & & & & \\
\mu & 1-2 \mu & \mu & & & \\
& \ddots & \ddots & \ddots & & \\
& & & \mu & 1-2 \mu & \mu \\
& & & & \mu & 1-2 \mu
\end{array}\right)
$$

(b) Prove that $\rho\left((B E)^{-1}\right)<1$ for all $\mu>0$ where BE is the tridiagonal Backward Euler matrix

$$
\left(\begin{array}{cccccc}
1+2 \mu & -\mu & & & & \\
-\mu & 1+2 \mu & -\mu & & & \\
& \ddots & \ddots & \ddots & & \\
& & & -\mu & 1+2 \mu & -\mu \\
& & & & -\mu & 1+2 \mu
\end{array}\right)
$$

Note that $\rho(A)$ is the spectral radius of A.

Department of Mathematics
 Comprehensive Examination 2019 Fall Semester Part 2: "Choose 2" Classes

Directions: You will answer THREE questions from a total of four questions, posed from two classes.

Time: 2 hours

Math 640: Complex Analysis

1. Let D be an open connected subset of \mathbb{C} and let $f: D \rightarrow \mathbb{C}$ be analytic in D Prove that if \bar{f} is analytic in D then f is constant in D.
2. Prove: If f is analytic within and on a simple closed contour Γ, and z_{0} is not on Γ, then

$$
\int_{z \in \Gamma} \frac{f(z)}{\left(z-z_{0}\right)^{2}} \mathrm{~d} z=\int_{z \in \Gamma} \frac{f^{\prime}(z)}{z-z_{0}} \mathrm{~d} z
$$

Department of Mathematics
 Comprehensive Examination
 2019 Fall Semester Part 2: "Choose 2" Classes

Directions: You will answer THREE questions from a total of four questions, posed from two classes.

Time: 2 hours

Math 660: Topology

3. Let X be a Hausdorff space and $f: X \rightarrow X$ be a continuous function.

Prove: $F=\{x \in X: f(x)=x\}$ is closed in X.
4. Let A and B be disjoint compact subspaces of a Hausdorff space X.

Prove: There exist disjoint open subsets U and V of X such that $A \subseteq U$ and $B \subseteq V$.
(Recall: For any compact subspace Y of a Hausdorff space X and each point x_{0} of X not in Y, there exist disjoint open neighborhoods of x_{0} and Y.)

Department of Mathematics
 Comprehensive Examination 2019 Fall Semester Part 2: "Choose 2" Classes

Directions: You will answer THREE questions from a total of four questions, posed from two classes.

Time: 2 hours

Math 675: Differential Equations

5. Consider the following differential equation

$$
\left(x^{2}-1\right) y^{\prime \prime}+x y^{\prime}-y=0
$$

(a) Find the recursion relation for the series solution centered at $x_{0}=0$.
(b) Find the first six non-zero terms of the series solution centered at $x_{0}=0$. Write your final answer in terms of the coefficients a_{0} and a_{1}.
6. Consider the system of differential equations given by

$$
\mathbf{x}^{\prime}=\left(\begin{array}{rr}
0 & 2 \\
-1 & 3
\end{array}\right) \mathbf{x}
$$

(a) What is the general solution to the homogeneous differential equation above?
(b) What is the general solution to the inhomogeneous system:

$$
\mathbf{x}^{\prime}=\left(\begin{array}{rr}
0 & 2 \\
-1 & 3
\end{array}\right) \mathbf{x}+\binom{e^{t}}{-e^{t}} .
$$

Simplify your answer.

Department of Mathematics
 Comprehensive Examination
 2019 Fall Semester Part 2: "Choose 2" Classes

Directions: You will answer THREE questions from a total of four questions, posed from two classes.

Time: 2 hours

Math 680: Optimization

7. Solve the following problem using the Simplex method. Clearly show the set up of the problem, the Simplex tableau, and the solution.

$$
\begin{array}{rrl}
\operatorname{maximize} & 6 x_{1}+9 x_{2}+10 x_{3} \\
\text { subject to } & 3 x_{1}+2 x_{2}-6 x_{3} & \leq 24 \\
& x_{1}+5 x_{2}+2 x_{3} & \leq 18 \\
& 3 x_{1}+3 x_{2}+4 x_{3} & =24 \\
& x_{1}, x_{2}, x_{3} & \geq 0
\end{array}
$$

8. Consider the problem

$$
\begin{array}{rrl}
\operatorname{maximize} & 4 x_{1}+8 x_{2}+3 x_{3} \\
\text { subject to } & 2 x_{1}-3 x_{2}+2 x_{3} & \leq 26 \\
& -3 x_{1}+x_{2}+4 x_{3} & \leq 24 \\
& 3 x_{1}+2 x_{2}-2 x_{3} & \leq 30 \\
& x_{1}, x_{2}, x_{3} & \geq 0
\end{array}
$$

The first and last tableau are shown below.

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	b
x_{4}	2	-3	2	1	0	0	26
x_{5}	-3	1	4	0	1	0	24
x_{6}	3	2	-2	0	0	1	30
	-4	-8	-3	0	0	0	0
x_{1}	1	0	0	$\frac{5}{28}$	$\frac{1}{28}$	$\frac{1}{4}$	13
x_{3}	0	0	1	$\frac{9}{56}$	$\frac{13}{56}$	$\frac{1}{8}$	$\frac{27}{2}$
x_{2}	0	1	0	$-\frac{3}{28}$	$\frac{5}{28}$	$\frac{1}{4}$	9
	0	0	0	$\frac{19}{56}$	$\frac{127}{56}$	$\frac{27}{8}$	$\frac{329}{2}$

Use sensitivity analysis to answer the questions below. For each situation, return to the original problem as given.
(a) How much can c_{2}, the coefficient of x_{2}, change in the objective function and not change the solution of $\left(x_{1}, x_{2}, x_{3}\right)=\left(13,9, \frac{27}{2}\right)$?
(b) What would be the new solution if the following constraint is added to the system?

$$
x_{1}-2 x_{2}+3 x_{3} \leq 12
$$

