Department of Mathematics
 Comprehensive Examination
 2022 Fall Semester "Choose 2" Classes

Directions: You will answer THREE questions from a total of four questions, posed from two classes.

Time: 2 hours

Math 640: Complex Variables

1. Use the Residue Theorem to evaluate

$$
\int_{0}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)^{2}} \mathrm{~d} x
$$

Give full details to establish your result.
2. (a) State Liouville's Theorem
(b) Let f be an entire function such that $\operatorname{Re} f(z)<1$ for each $z \in \mathbb{C}$. Prove the f is a constant function. (Suggestion: consider $g(z)=e^{f(z)}$)

Department of Mathematics
 Comprehensive Examination
 2022 Fall Semester "Choose 2" Classes

Directions: You will answer THREE questions from a total of four questions, posed from two classes.
Time: 2 hours

Math 660: Topology

3. Recall the following

Definition: Let (X, \mathcal{T}) be a topological space. We say X is Hausdorff, or a T_{2}-space, if and only if for every pair x, y of distinct points there are disjoint open sets U, V such that $x \in U$ and $y \in V$.

Let $\left(X, \mathcal{T}_{\text {cofinite }}\right)$ denote a set with the cofinite topology. Let $F_{n}=\{1,2,3, \ldots, n\}$ with $n>0$ denoting an integer.
(a) Is $\left(F_{n}, \mathcal{T}_{\text {cofinite }}\right)$ a Hausdorff space? Prove your answer.
(b) Is $\left(\mathbb{Z}, \mathcal{T}_{\text {cofinite }}\right)$ a Hausdorff space? Prove your answer.
4. Recall the following

Definition: The square $[0,1] \times[0,1]$ with the lexicographic order and its associated order topology is called the lexicographically ordered square.

Let $A=\{(x, 0) \mid 0<x<1\}$. Find the closure of A in the lexicographically ordered square. Prove your answer.

Department of Mathematics
 Comprehensive Examination
 2022 Fall Semester "Choose 2" Classes

Directions: You will answer THREE questions from a total of four questions, posed from two classes.

Time: 2 hours

Math 675: Differential Equations

5. Find the solution of the given initial value problem, using Laplace Transforms (refer to the table below).

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0, y(0)=1, y^{\prime}(0)=3
$$

$f(t)=\mathcal{L}^{-1}\{F(s)\}$	$F(s)=\mathcal{L}\{f(t)\}$	$f(t)=\mathcal{L}^{-1}\{F(s)\}$	$F(s)=\mathcal{L}\{f(t)\}$
1	$\frac{1}{s}, s>0$	$e^{a t}$	$\frac{1}{s-a}, s>a$
$t^{n}, n=$ positive integer	$\frac{n!}{s^{n+1}}, s>0$	$t^{p}, p>-1$	$\frac{\Gamma(p+1)}{s^{p+1}}, s>0$
$\sin (a t)$	$\frac{a}{s^{2}+a^{2}}, s>0$	$\cos (a t)$	$\frac{s}{s^{2}+a^{2}}, s>0$
$\sinh (a t)$	$\frac{a}{s^{2}-a^{2}}, s>\|a\|$	$\cosh (a t)$	$\frac{s}{s^{2}-a^{2}}, s>\|a\|$
$e^{a t} \sin (b t)$	$\frac{b}{(s-a)^{2}+b^{2}}, s>a$	$e^{a t} \cos (b t)$	$\frac{s-a}{(s-a)^{2}+b^{2}}, s>a$
$t^{n} e^{a t}, n=$ positive integer	$\frac{n!}{(s-a)^{n+1}}, s>a$	$u_{c}(t)$	$\frac{e^{-c s}}{s}, s>0$
$u_{c}(t) f(t-c)$	$F(s-c)$	$f(c t)$	$\frac{1}{c} F\left(\frac{s}{c}\right) \cdot c>0$
$\delta(t-c)$	$e^{-c s}$	$(-t)^{n} f(t)$	$F^{(n)}(s)$
$f^{(n)}(t)$	$s^{n} F(s)-s^{n-1} f(0)-\cdots-f^{(n-1)}(0)$		

6. Solve the following system of ordinary differential equations.

$$
\mathbf{x}^{\prime}(t)=\left[\begin{array}{rrr}
1 & -2 & -2 \\
0 & 3 & 0 \\
1 & 1 & 4
\end{array}\right] \mathbf{x}(t)
$$

Department of Mathematics
 Comprehensive Examination
 2022 Fall Semester "Choose 2" Classes

Directions: You will answer THREE questions from a total of four questions, posed from two classes.

Time: 2 hours

Math 680: Optimization

7. Solve the following problem using the Simplex method. Clearly show the set up of the problem, the Simplex tableau, and the solution.

$$
\begin{aligned}
& \text { maximize } \quad 4 x_{1}+3 x_{2}-5 x_{3} \\
& \text { subject to } \quad 2 x_{1}-x_{2}+4 x_{3} \leq 16 \\
& 5 x_{1}+5 x_{2}+2 x_{3} \geq 18 \\
& -3 x_{1}+4 x_{2}+2 x_{3}=22 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

8. Using the Complementary Slackness Theorem, determine whether $(4,5,1,0)$ is the optimal solution to

$$
\begin{array}{crccl}
\text { minimize } & 5 x_{1} & -6 x_{2}+11 x_{3}+8 x_{4} \\
\text { subject to } & x_{1}+2 x_{2} & -3 x_{3}+4 x_{4} & =11 \\
& 2 x_{1}+5 x_{2} & -6 x_{3}+x_{4} \geq 26 \\
& 3 x_{1}-2 x_{2} & +4 x_{3}-x_{4} \geq 6 \\
& & x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{array}
$$

Department of Mathematics
 Comprehensive Examination
 2022 Fall Semester Core Classes

Time: 2.5 hours

Directions:

- You will answer FOUR questions.
- You must choose at least ONE question from each class (one from Math 620, one from Math 630, and one from Math 670).
- The fourth question can come from any of the classes.

Math 620

1. Let G and H be groups and $\varphi: G \rightarrow H$ a group homomorphism.
(a) Prove ker $\varphi=\left\{g \in G: \varphi(g)=e_{H}\right\}$ is a subgroup of G.
(b) Assume $B \subseteq H$ is a subgroup of H. Prove $\varphi^{-1}(B)=\{g \in G: \varphi(g) \in B\}$ is a subgroup of G.
(c) Suppose further that H is a commutative group, $A \subseteq G$ is a subgroup of G, and that $\operatorname{ker} \varphi \subseteq A$. Prove that A is a normal subgroup in G.
2. Let $\varphi: R \rightarrow S$ be a surjective ring homomorphism where R and S are rings with unity (by which we mean a multiplicative identity).
(a) Define the center of a ring A to be the set

$$
Z(A)=\{a \in A: a x=x a \text { for all } x \in A\}
$$

Prove the image of the center of R is contained in the center of S.
(b) Prove that if P is a prime ideal in R such that ker $\varphi \subset P$, then $\varphi(P)$ is a prime ideal in S.

Math 630

3. Let M be a metric space and $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of functions from M to \mathbb{R} which converges uniformly to a function $f: M \rightarrow \mathbb{R}$. Prove that if each f_{n} is continuous at a point $a \in M$, then f is continuous at a.
4. (a) Suppose E_{n} for $n \in \mathbb{N}$ are subsets of \mathbb{R} and are each of measure 0 . Prove that

$$
\bigcup_{n=1}^{\infty} E_{n}
$$

is also of measure 0 .
(b) Suppose $f:[a, b] \rightarrow \mathbb{R}$ and $g:[a, b] \rightarrow \mathbb{R}$ are both integrable functions on $[a, b]$. Justify why $f+g$ is also integrable on $[a, b]$.

$$
\Leftarrow \text { Turn Over } \Rightarrow
$$

Math 670

5. Consider the equation $e^{2 x}=3 x+2$.
(a) Show that there exist precisely two real solutions of the equation $e^{2 x}=3 x+2$, one negative and one positive.
(b) Suppose z is the positive solution; find an approximation x of z such that $\|z-x\|<10^{-6}$
(c) Show that your approximation x of z is in fact within 10^{-6} of z.

Note: for this problem, you may not use any graphing or root finding capabilities on your calculator.
6. Let

$$
A=\left[\begin{array}{rrr}
4 & 0 & -2 \\
1 & 4 & 0 \\
0 & 1 & 2
\end{array}\right]
$$

Suppose we attempt to solve the equation $A x=b$ by the iterative method

$$
\mathbf{x}^{(k)}=M^{-1} N \mathbf{x}^{(k-1)}+M^{-1} \mathbf{b}
$$

where M and N come from the following splitting of A .

$$
A=M-N=\left[\begin{array}{lll}
\frac{7}{2} & 0 & 0 \\
0 & \frac{7}{2} & 0 \\
0 & 0 & \frac{7}{4}
\end{array}\right]-\left[\begin{array}{rrr}
-\frac{1}{2} & 0 & 2 \\
-1 & -\frac{1}{2} & 0 \\
0 & -1 & -\frac{1}{4}
\end{array}\right]
$$

Explain why for each \mathbf{b} and for each initial approximation $\mathbf{x}^{(0)}$ the sequence $\left\{x^{(k)}\right\}$ converges to the solution of $A \mathbf{x}=\mathbf{b}$.

