Department of Mathematics
 Comprehensive Examination 2020 Spring Semester Part 1: Core Classes

Directions:

- You will answer FOUR questions.
- You must choose at least ONE question from each class (one from Math 620, one from Math 630, and one from Math 670).
- The fourth question can come from any of the classes.

Time: 2.5 hours

Math 620

1. Let G and G^{\prime} be groups and $\varphi: G \rightarrow G^{\prime}$ be a group homomorphism with kernel K. Prove: If N^{\prime} is a normal subgroup of G^{\prime}, then $N=\varphi^{-1}\left(N^{\prime}\right)=\left\{x \in G \mid \varphi(x) \in N^{\prime}\right\}$ is a subgroup of G containing K and N is normal in G.

2 . Let R be a commutative ring.
(a) For a fixed nonzero element a of R, prove $S=\{x \in R: a x=0\}$ is an ideal of R. Furthermore, a is a zero divisor if and only if $S \neq\{0\}$.
(b) For $R=\mathbb{Z} \times \mathbb{Z}$, determine whether R is an integral domain. If not, find all its zero divisors.

Math 630

3. Let $\langle M, \rho\rangle$ denote a metric space.
(a) State the definition of a Cauchy sequence in $\langle M, \rho\rangle$.
(b) Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a Cauchy sequence in $\langle M, \rho\rangle$. Prove that there exists a subsequence $\left\{a_{n_{k}}\right\}_{k=1}^{\infty}$ such that

$$
\sum_{k=1}^{\infty} \rho\left(a_{n_{k}}, a_{n_{k+1}}\right)<\infty
$$

4. Consider the sequence of functions $f_{n}:[-\pi, \pi] \rightarrow \mathbb{R}$ given by

$$
f_{n}(x)=\frac{\sin (n x)}{n}, \quad n=1,2,3, \ldots
$$

(a) Find the limit function $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$.
(b) Prove that the sequence f_{n} converges uniformly to f as $n \rightarrow \infty$.
(c) Let $f_{n}^{\prime}(x)=\frac{d}{d x}\left(f_{n}(x)\right)$ denote the sequence of derivatives. Does f_{n}^{\prime} converge uniformly to f^{\prime} as $n \rightarrow \infty$? Prove your assertion.

Math 670

5. Consider the equation $x^{2}=1+\sin x$.
(a) Prove that the equation has exactly two solutions.
(b) Choose one of the two solutions. Use Newton's Method to find an approximation with an absolute error of less than 10^{-6}. Note: for this problem, you may not use any graphing or root finding capabilities on your calculator.
6. Use Taylor's Theorem to prove that the 2nd derivative approximation formula is an $\mathcal{O}\left(h^{2}\right)$ approximation:

$$
f^{\prime \prime}\left(x_{0}\right)=\frac{f\left(x_{0}-h\right)-2 f\left(x_{0}\right)+f\left(x_{0}+h\right)}{h^{2}}
$$

Department of Mathematics
 Comprehensive Examination
 2020 Spring Semester Part 2: "Choose 2" Classes

Directions: You will answer THREE questions from a total of four questions, posed from two classes.

Time: 2 hours

Math 640: Complex Analysis

1. Determine all values a, b, and c for which $u(x, y)=a x^{4}+b x^{2} y+c x^{2} y^{2}+y^{3}+y^{4}$ is the real part of an analytic function.
2.

(a) For each of the functions

$$
f(z)=\frac{1}{\sin z} \quad g(z)=\sin \left(\frac{1}{z}\right) \quad h(z)=\frac{\sin z}{z}
$$

Determine whether $z=0$ is a removable singularity, a pole, or an essential singularity.
(b) Suppose C is the unit circle oriented clockwise; use residues to compute

$$
\oint_{C} \sin \left(\frac{1}{z}\right)\left(z^{2}+1\right) d z
$$

Math 660: Topology

3. Let X be a Hausdorff space. Prove each of the following.
(a) Every one-point subset of X is closed.
(b) If x_{0} is a limit point of a subset A of X, then each open set containing x_{0} contains infinitely many points of A.
4. Prove each of the following:
(a) Every closed subspace of a compact space is compact.
(b) Let X be a compact topological space, Y be a Hausdorff topological space, and $f: X \rightarrow Y$ be a continuous surjective map. For each subset C of $Y, f^{-1}(C)$ is closed in X implies that C is closed in Y.

Math 675: Differential Equations

5. Consider the matrix $A=\left(\begin{array}{rrr}-2 & 0 & 2 \\ 0 & -2 & 2 \\ -1 & -1 & 2\end{array}\right)$
(a) Find the general solution to the system $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$.
(b) Let $\mathbf{x}_{0} \in \mathbb{R}^{3}$. Consider the IVP

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t), \quad \mathbf{x}(0)=\mathbf{x}_{0} .
$$

Find the set of all possible \mathbf{x}_{0} giving rise to solutions with the property

$$
\lim _{t \rightarrow \infty} \mathbf{x}(t) \neq \mathbf{0} .
$$

6. Consider the ODE

$$
x^{2} y^{\prime \prime}+x\left(x+\frac{1}{2}\right) y^{\prime}+x y=0 .
$$

(a) Verify that the origin is a regular singular point.
(b) Verify that the roots of the indicial equation do not differ by an integer.
(c) Use the Frobenius method to find two independent solutions y_{1} and y_{2}. Calculate the first three nonzero terms of y_{1} and the first three nonzero terms of y_{2} explicitly.

Math 680: Optimization

7. Solve the following problem using the Simplex method. Clearly show the set up of the problem, the Simplex tableau, and the solution.

$$
\begin{array}{rll}
\max & 4 x_{1}+6 x_{2}+8 x_{3} \\
\mathrm{~s} / \mathrm{t} & 2 x_{1}+x_{2}+2 x_{3} \geq 20 \\
& 3 x_{1}+3 x_{2}+4 x_{3} \geq 10 \\
& 2 x_{1}+4 x_{2}+3 x_{3} \leq 26 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

8. Using the Complementary Slackness Theorem, show whether $(5,0,6,0)$ is the optimal solution to

$$
\begin{array}{crccc}
\operatorname{maximize} & 27 x_{1} & -4 x_{2} & +18 x_{3}-20 x_{4} \\
\text { subject to } & 5 x_{1} & +4 x_{2} & -2 x_{3}+x_{4} & \leq 16 \\
& -x_{1}-3 x_{2} & +4 x_{3}+2 x_{4} & =19 \\
& 4 x_{1}-2 x_{2} & +x_{3}-5 x_{4} & \leq 26 \\
x_{1}, x_{2}, x_{3}, x_{4} & \geq 0
\end{array}
$$

