Department of Mathematics
 Comprehensive Examination 2021 Spring Semester Part 1: Core Classes

Time: 2.5 hours Directions:

- You will answer FOUR questions.
- You must choose at least ONE question from each class (one from Math 620, one from Math 630, and one from Math 670).
- The fourth question can come from any of the classes.

Math 620

1. Let G be a group and let $Z=\{x \in G \mid x g=g x$ for all $g \in G\}$.
(a) Prove that Z is a normal subgroup of G (prove both that it is a subgroup and that it is normal).
(b) Prove that $\phi: G \rightarrow G / Z$ defined by $\phi(g)=g Z$ is a group homomorphism.
(c) Prove that if the quotient (factor) group, G / Z, is cyclic, then G is abelian.
2. Let R be an integral domain and let $a, b, c \in R$.
(a) Prove that for every $c \neq 0$, if $a c=b c$ then $a=b$.
(b) Show by giving an example that if R is a commutative ring with unity, but not an integral domain, than it is not true that for every $c \neq 0$, if $a c=b c$ then $a=b$.

Math 630

3. Let $\langle M, \rho\rangle$ be a metric space.
(a) Let a be a point in M and let $r \in \mathbb{R}, r>0$. Prove, directly from the definition of an open set, that $O=\{x \in M \mid \rho(x, a)>r\}$ is open in M.
(b) Let $A \subset M$ such that $\langle A, \rho>$ is complete. Prove that A is closed in M.
4. Prove that $\sum_{k=1}^{\infty} \frac{\cos (k x) x^{2 k}}{k!}$ converges to a function that is continuous on \mathbb{R}.

Continued \Longrightarrow

Math 670

5. Consider the equation $e^{x}=3 x^{2}$
(a) Prove that the equation has exactly three real solutions.
(b) Let α be the largest of the three solutions. Use Newton's Method to find an approximation of α with an absolute error of less than 10^{-7}. Note: for this problem, you may not use any graphing or root finding capabilities on your calculator.

6 . Let A be an $n \times n$ system of the form

$$
\left[\begin{array}{cccccccccc}
a_{1} & d_{2} & 0 & . & \cdot & \cdot & \cdot & \cdot & \cdot & 0 \\
b_{1} & a_{2} & d_{3} & 0 & & & & & & \cdot \\
c_{1} & b_{2} & a_{3} & d_{4} & 0 & & & & & \cdot \\
0 & c_{2} & b_{3} & a_{4} & d_{5} & 0 & & & & \cdot \\
\cdot & & & \cdot \\
\cdot & & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & & \cdot \\
\cdot & & & \cdot \\
\cdot & & & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & 0 \\
. & & & & & 0 & c_{n-3} & b_{n-2} & a_{n-1} & d_{n} \\
0 & & & & & & 0 & c_{n-2} & b_{n-1} & a_{n}
\end{array}\right]
$$

with $n \geq 3$.
Write an efficient algorithm that constructs L and U where $A=L U$. This will be accomplished by modifying the b and c vectors so that L is now found in the strictly lower triangular part of A with the usual implied main diagonal of 1s. Modify the a vector so that U is now found in the upper triangular part of A.

You should assume that pivoting is unnecessary. Exploit the sparsity pattern by writing everything in terms of the given vectors.

Department of Mathematics
 Comprehensive Examination 2021 Spring Semester Part 2: "Choose 2" Classes

Directions: You will answer THREE questions from a total of four questions, posed from two classes.
Time: 2 hours

Math 660: Topology

1. Let X be a nonempty set and $\left(X, \mathcal{T}_{\text {cofinite }}\right)$ be the topological space given by equipping X with the cofinite topology. Prove that $\left(X, \mathcal{T}_{\text {cofinite }}\right)$ is compact.
2. Let (X, \mathcal{T}) be a topological space and $A \subset X$ with A nonempty. Prove that A is open in X if and only if every open subset of A (in the subspace topology) is also open in X.
Clarification: for this question the word "subset" denotes any proper or improper subset.

Math 675: Differential Equations

3. Consider the matrix $A=\left(\begin{array}{rrr}-3 & -6 & 0 \\ 4 & 7 & 0 \\ 4 & 6 & 1\end{array}\right)$
(a) Find the general solution to the system $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$.
(b) Let $\mathbf{x}_{0} \in \mathbb{R}^{3}$. Consider the IVP $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t), \mathbf{x}(0)=\mathbf{x}_{0}$ where A is given above, and \mathbf{x}_{0} is

$$
\mathbf{x}_{0}=\left[\begin{array}{l}
1 \\
5 \\
4
\end{array}\right]
$$

Find the particular solution to this IVP.
4. Consider the ODE

$$
2 x^{2} y^{\prime \prime}+x y^{\prime}+(x-1) y=0 .
$$

(a) Verify that the origin is a regular singular point.
(b) Verify that the roots of the indicial equation do not differ by an integer.
(c) Use the Frobenius method to find two independent solutions y_{1} and y_{2}. Calculate the first four nonzero terms of y_{1} and the first four nonzero terms of y_{2} explicitly.

Continued \Longrightarrow

Math 680: Optimization

5. Solve the following problem using the Simplex method. Clearly show the set up of the problem, the Simplex tableau, and the solution.

$$
\begin{aligned}
& \text { minimize } 14 x_{1}+11 x_{2}+12 x_{3} \\
& \text { subject to } 3 x_{1}+2 x_{2}+x_{3} \geq 18 \\
& x_{1}+2 x_{2}+4 x_{3}=30 \\
& 6 x_{1}+3 x_{2}+2 x_{3} \leq 36 \\
& 4 x_{1}+4 x_{2}+3 x_{3} \leq 36 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

6. Using the Complementary Slackness Theorem, show whether $(0,0,4,7)$ is the optimal solution to

$$
\begin{array}{crrrl}
\operatorname{maximize} & 35 x_{1}+40 x_{2} & +27 x_{3}+21 x_{4} \\
\text { subject to } & 2 x_{1} & +3 x_{2} & -4 x_{3}+x_{4} & \leq 15 \\
& 6 x_{1} & -2 x_{2} & -3 x_{3}+5 x_{4} & =23 \\
& -4 x_{1} & +7 x_{2} & +3 x_{3}+6 x_{4} & \leq 54 \\
& & x_{1}, x_{2}, x_{3}, x_{4} & \geq 0
\end{array}
$$

