Directions: You will answer THREE questions from a total of four questions, posed from two classes.

Time: 2 hours

Math 640: Complex Variables

- 1. Let f(z) = u(x, y) + iv(x, y) be analytic in domain $D \subseteq \mathbb{C}$ where z = x + iy. Prove that u and v are harmonic functions.
- 2. (a) Prove that the inverse of any Linear Fractional Transformation is also a Linear Fractional Transformation.
 - (b) Find a Linear Fractional Transformation mapping $0 \to \infty$, $1 \to i$, and $-1 \to 1$.

Directions: You will answer THREE questions from a total of four questions, posed from two classes.

Time: 2 hours

Math 660: Topology

The following will be used for Problems 3 and 4.

Define an alternative topology on \mathbb{R} , called the **upper limit topology** and denoted by \mathbb{R}_{UL} , generated by a **basis** consisting of all sets of the form

$$(a,b] = \{ x \in \mathbb{R} \mid a < x \le b \}.$$

Define the set $E \subset \mathbb{R}_{UL}$ to be

$$E = (2,5) = \{ x \in \mathbb{R} \mid 2 < x < 5 \}.$$

Recall

Definition: Let (X, \mathcal{T}) be a topological space, A a subset of X, and p a point in X. Then p is a **limit point of** A if and only if for each open set U containing p, we have

 $(U-p) \cap A \neq \emptyset.$

- 3. (a) Is 2 a limit point of the set E in \mathbb{R}_{UL} ? Prove your answer directly from the definition above.
 - (b) Is the set E open in \mathbb{R}_{UL} ? Prove your answer.
 - (c) Is the set E closed in \mathbb{R}_{UL} ? Prove your answer.
- 4. (a) Is the set E compact? Prove your answer.
 - (b) Is the set E connected in \mathbb{R}_{UL} ? Prove your answer.

Directions: You will answer THREE questions from a total of four questions, posed from two classes.

Time: 2 hours

Math 675: Differential Equations

5. (a) Find the general solution to

$$\mathbf{x}'(t) = \begin{pmatrix} 5 & -4 \\ \frac{1}{4} & 7 \end{pmatrix} \mathbf{x}(t)$$

(b) Find the solution to the IVP

$$\mathbf{x}'(t) = \begin{pmatrix} 5 & -4\\ \frac{1}{4} & 7 \end{pmatrix} \mathbf{x}(t), \ \mathbf{x}(0) = \begin{pmatrix} 3\\ -6 \end{pmatrix}$$

6. Consider the ODE

$$(x-1)y'' + 3xy' - 8y = 0.$$

- (a) Verify that the point $x_0 = 1$ is a regular singular point.
- (b) Find the roots of the indicial equation. Let r_1 = the root closest to $+\infty$ (the larger root) and r_2 = the root closest to $-\infty$ (the smaller root).
- (c) For any solution(s) you find, calculate the first four nonzero terms explicitly.

One Solution: If $r_1 - r_2$ =integer, then use the Frobenius method to find <u>one</u> solution corresponding to r_1 , about the point $x_0 = 1$.

Two Solutions: If the roots do not differ by an integer, then use the Frobenius method to find <u>two</u> independent solutions, y_1 and y_2 , about the point $x_0 = 1$.

Directions: You will answer THREE questions from a total of four questions, posed from two classes.

Time: 2 hours

Math 680: Optimization

7. Solve the following problem using the Simplex method. Clearly show the set up of the problem, the Simplex tableau, and the solution.

	$+ 8x_4$	$+8x_{3}$	$+9x_{2}$	$10x_{1}$	minimize
≤ 10	$+ x_4$	$+ 3x_3$	$+ x_2$	$3x_1$	subject to
≥ 18	$+ 3x_4$	$+ 2x_3$	$+ 4x_2$	$5x_1$	
≥ 18	$+ 4x_4$	$+ 6x_3$	$+ 3x_2$	$2x_1$	
≤ 18	$+ 4x_4$	$+ 3x_3$	$+ 4x_2$	x_1	
≥ 0	x_2, x_3, x_4	x_1, x_2			

8. Using the Complementary Slackness Theorem, determine whether (3, 0, 2, 3) is the optimal solution to

minimize $15x_1 + 5x_2 + 3x_3 + 5.5x_4$ subject to $4x_1 - 3x_2 + 2x_3 + x_4 \ge 19$ $5x_1 + x_2 - 2x_3 + 3x_4 \ge 20$ $2x_1 - x_2 - 6x_3 - x_4 \le -8$ $x_1, x_2, x_3, x_4 \ge 0$

Time: 2.5 hours Directions:

- You will answer FOUR questions.
- You must choose at least ONE question from each class (one from Math 620, one from Math 630, and one from Math 670).
- The fourth question can come from any of the classes.

Math 620

- 1. Consider \mathbbm{Z} as a group under addition.
 - (a) Prove that all subgroups of \mathbb{Z} are of the form $n\mathbb{Z} = \{nk : k \in \mathbb{Z}\}$ for $n \in \mathbb{Z}$.
 - (b) Consider the group \mathbb{Z}_2 under addition modulo 2. Prove the quotient group $\mathbb{Z}/2\mathbb{Z}$ and the group \mathbb{Z}_2 are isomorphic as groups.
 - (c) A subgroup H of a group G is said to be a maximal subgroup if there does not exist a proper subgroup N of G such that H < N < G. Prove $2\mathbb{Z}$ is a maximal subgroup of \mathbb{Z} .
- 2. Let R and S be commutative rings with "unity" (by which we mean a multiplicative identity) and let $\varphi : R \to S$ be a ring homomorphism.
 - (a) Let J be a subring of S. Prove the inverse image of $J, \varphi^{-1}(J) = \{r \in R : \varphi(r) \in J\}$, is a subring of R.
 - (b) Let J be a left ideal of S. Prove the inverse image of $J, \varphi^{-1}(J)$, is a left ideal of R.
 - (c) Let P be a prime ideal of S. Prove that either $\varphi^{-1}(P)$ is a prime ideal of R or $\varphi^{-1}(P) = R$.

Math 630

- 3. (a) Let $\langle M_1, \rho_1 \rangle$ and $\langle M_2, \rho_2 \rangle$ be metric spaces. Let $f : \langle M_1, \rho_1 \rangle \to \langle M_2, \rho_2 \rangle$ be a continuous function. Prove that if K is compact in M_1 , then the image f(K) is compact in M_2 .
 - (b) Let \mathbb{R}^1 denote set \mathbb{R} with the usual absolute value metric $\rho(x, y) = |x y|$. Let a < b be fixed real numbers and $[a, b] \subset \mathbb{R}^1$. Recall the following theorem from Calculus:

Theorem 1 (Extreme Value Theorem) If $f:[a,b] \to \mathbb{R}^1$ is continuous, then f is bounded. Moreover, f attains its maximum and minimum values.

Prove the Extreme Value Theorem.

Please turn over \Longrightarrow

4. Let $f:[0,1] \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} 3 & \text{if } x \in [0,1] \cap \mathbb{Q} , \\ -2 & \text{if } x \in [0,1] \cap (\mathbb{R} \setminus \mathbb{Q}) , \end{cases} \text{ (that is, if } x \in [0,1] \text{ is irrational)}$$

(a) Compute the upper and lower integrals

$$\overline{\int_0^1} f(x)dx$$
, and $\underline{\int_0^1} f(x)dx$.

(b) Is f Riemann integrable on [0, 1]? Why or why not?

Math 670

5. Consider the equation

$$x = (x-3)^2 - \cos x$$

- (a) Prove that the equation has exactly two positive solutions.
- (b) Let α be the smaller of the two solutions. Use Newton's Method to find an approximation of α with an absolute error of less than 10^{-5} .
- (c) Prove that your approximation is sufficiently accurate.

Note: for this problem, you may not use any graphing or root finding capabilities on your calculator.

6. Write an efficient algorithm to solve an $n \times n$ linear system $A\mathbf{x} = \mathbf{y}$ where the matrix A has three nonzero diagonals as follows:

	$ a_1 $	0	d_3						-		x_1		y_1
	b_1	a_2	0	d_4							x_2		y_2
		b_2	a_3	0	d_5						x_3		y_3
		•	•	•	·	•					•		•
A =			•	•	•	•	•			$, \mathbf{x} =$		$, \mathbf{y} =$	
				•	•	•	•	•			•		•
						b_{n-3}	a_{n-2}	0	d_n		x_{n-2}		y_{n-2}
							b_{n-2}	a_{n-1}	0		x_{n-1}		y_{n-1}
	L							b_{n-1}	a_n		x_n		y_n

Assume that A is nonsingular and that pivoting is unnecessary.

You should first convert to an upper-triangular system and then apply back-substitution. Fully exploit the sparsity pattern by writing everything in terms of the given vectors. Note: your "algorithm" can be in "pseudo-code" rather than the proper syntax of a well-established programming language.