Department of Mathematics
 Comprehensive Examination
 2022 Spring Semester "Choose 2" Classes

Directions: You will answer THREE questions from a total of four questions, posed from two classes.

Time: 2 hours

Math 640: Complex Variables

1. Let $f(z)=u(x, y)+i v(x, y)$ be analytic in domain $D \subseteq \mathbb{C}$ where $z=x+i y$. Prove that u and v are harmonic functions.
2. (a) Prove that the inverse of any Linear Fractional Transformation is also a Linear Fractional Transformation.
(b) Find a Linear Fractional Transformation mapping $0 \rightarrow \infty, 1 \rightarrow i$, and $-1 \rightarrow 1$.

Department of Mathematics
 Comprehensive Examination
 2022 Spring Semester "Choose 2" Classes

Directions: You will answer THREE questions from a total of four questions, posed from two classes.
Time: 2 hours

Math 660: Topology

The following will be used for Problems 3 and 4.
Define an alternative topology on \mathbb{R}, called the upper limit topology and denoted by $\mathbb{R}_{U L}$, generated by a basis consisting of all sets of the form

$$
(a, b]=\{x \in \mathbb{R} \mid a<x \leq b\}
$$

Define the set $E \subset \mathbb{R}_{U L}$ to be

$$
E=(2,5)=\{x \in \mathbb{R} \mid 2<x<5\} .
$$

Recall
Definition: Let (X, \mathcal{T}) be a topological space, A a subset of X, and p a point in X. Then p is a limit point of A if and only if for each open set U containing p, we have

$$
(U-p) \cap A \neq \emptyset
$$

3. (a) Is 2 a limit point of the set E in $\mathbb{R}_{U L}$? Prove your answer directly from the definition above.
(b) Is the set E open in $\mathbb{R}_{U L}$? Prove your answer.
(c) Is the set E closed in $\mathbb{R}_{U L}$? Prove your answer.
4. (a) Is the set E compact? Prove your answer.
(b) Is the set E connected in $\mathbb{R}_{U L}$? Prove your answer.

Department of Mathematics
Comprehensive Examination
2022 Spring Semester "Choose 2" Classes

Directions: You will answer THREE questions from a total of four questions, posed from two classes.
Time: 2 hours

Math 675: Differential Equations

5. (a) Find the general solution to

$$
\mathbf{x}^{\prime}(t)=\left(\begin{array}{rr}
5 & -4 \\
\frac{1}{4} & 7
\end{array}\right) \mathbf{x}(t)
$$

(b) Find the solution to the IVP

$$
\mathbf{x}^{\prime}(t)=\left(\begin{array}{rr}
5 & -4 \\
\frac{1}{4} & 7
\end{array}\right) \mathbf{x}(t), \mathbf{x}(0)=\binom{3}{-6}
$$

6. Consider the ODE

$$
(x-1) y^{\prime \prime}+3 x y^{\prime}-8 y=0
$$

(a) Verify that the point $x_{0}=1$ is a regular singular point.
(b) Find the roots of the indicial equation. Let $r_{1}=$ the root closest to $+\infty$ (the larger root) and $r_{2}=$ the root closest to $-\infty$ (the smaller root).
(c) For any solution(s) you find, calculate the first four nonzero terms explicitly.

One Solution: If $r_{1}-r_{2}=$ integer, then use the Frobenius method to find one solution corresponding to r_{1}, about the point $x_{0}=1$.
Two Solutions: If the roots do not differ by an integer, then use the Frobenius method to find two independent solutions, y_{1} and y_{2}, about the point $x_{0}=1$.

Department of Mathematics
 Comprehensive Examination
 2022 Spring Semester "Choose 2" Classes

Directions: You will answer THREE questions from a total of four questions, posed from two classes.
Time: 2 hours

Math 680: Optimization

7. Solve the following problem using the Simplex method. Clearly show the set up of the problem, the Simplex tableau, and the solution.

$$
\begin{array}{rrl}
\operatorname{minimize} & 10 x_{1} & +9 x_{2}+8 x_{3}+8 x_{4} \\
\text { subject to } & 3 x_{1} & +x_{2}+3 x_{3}+x_{4} \leq 10 \\
& 5 x_{1} & +4 x_{2}+2 x_{3}+3 x_{4} \geq 18 \\
& 2 x_{1} & +3 x_{2}+6 x_{3}+4 x_{4} \geq 18 \\
& x_{1} & +4 x_{2}+3 x_{3}+4 x_{4} \leq 18 \\
& & x_{1}, x_{2}, x_{3}, x_{4}
\end{array} \geq 00
$$

8. Using the Complementary Slackness Theorem, determine whether $(3,0,2,3)$ is the optimal solution to

$$
\begin{array}{rrrrl}
\text { minimize } & 15 x_{1}+5 x_{2} & +3 x_{3}+5.5 x_{4} \\
\text { subject to } & 4 x_{1}-3 x_{2}+2 x_{3}+x_{4} & \geq 19 \\
& 5 x_{1}+x_{2}-2 x_{3}+3 x_{4} & \geq 20 \\
& 2 x_{1}-x_{2}-6 x_{3}-x_{4} & \leq-8 \\
& x_{1}, x_{2}, x_{3}, x_{4} & \geq 0
\end{array}
$$

Department of Mathematics
 Comprehensive Examination
 2022 Spring Semester Core Classes

Time: 2.5 hours Directions:

- You will answer FOUR questions.
- You must choose at least ONE question from each class (one from Math 620, one from Math 630, and one from Math 670).
- The fourth question can come from any of the classes.

Math 620

1. Consider \mathbb{Z} as a group under addition.
(a) Prove that all subgroups of \mathbb{Z} are of the form $n \mathbb{Z}=\{n k: k \in \mathbb{Z}\}$ for $n \in \mathbb{Z}$.
(b) Consider the group \mathbb{Z}_{2} under addition modulo 2. Prove the quotient group $\mathbb{Z} / 2 \mathbb{Z}$ and the group \mathbb{Z}_{2} are isomorphic as groups.
(c) A subgroup H of a group G is said to be a maximal subgroup if there does not exist a proper subgroup N of G such that $H<N<G$. Prove $2 \mathbb{Z}$ is a maximal subgroup of \mathbb{Z}.
2. Let R and S be commutative rings with "unity" (by which we mean a multiplicative identity) and let $\varphi: R \rightarrow S$ be a ring homomorphism.
(a) Let J be a subring of S. Prove the inverse image of $J, \varphi^{-1}(J)=\{r \in R: \varphi(r) \in J\}$, is a subring of R.
(b) Let J be a left ideal of S. Prove the inverse image of $J, \varphi^{-1}(J)$, is a left ideal of R.
(c) Let P be a prime ideal of S. Prove that either $\varphi^{-1}(P)$ is a prime ideal of R or $\varphi^{-1}(P)=R$.

Math 630

3. (a) Let $\left\langle M_{1}, \rho_{1}\right\rangle$ and $\left\langle M_{2}, \rho_{2}\right\rangle$ be metric spaces. Let $f:\left\langle M_{1}, \rho_{1}\right\rangle \rightarrow\left\langle M_{2}, \rho_{2}\right\rangle$ be a continuous function. Prove that if K is compact in M_{1}, then the image $f(K)$ is compact in M_{2}.
(b) Let \mathbb{R}^{1} denote set \mathbb{R} with the usual absolute value metric $\rho(x, y)=|x-y|$. Let $a<b$ be fixed real numbers and $[a, b] \subset \mathbb{R}^{1}$. Recall the following theorem from Calculus:

Theorem 1 (Extreme Value Theorem) If $f:[a, b] \rightarrow \mathbb{R}^{1}$ is continuous, then f is bounded. Moreover, f attains its maximum and minimum values.

Prove the Extreme Value Theorem.

Please turn over \Longrightarrow
4. Let $f:[0,1] \rightarrow \mathbb{R}$ be defined by

$$
f(x)=\left\{\begin{array}{rll}
3 & \text { if } x \in[0,1] \cap \mathbb{Q}, & \text { (that is, if } x \in[0,1] \text { is rational) } \\
-2 & \text { if } x \in[0,1] \cap(\mathbb{R} \backslash \mathbb{Q}), & \text { (that is, if } x \in[0,1] \text { is irrational) }
\end{array}\right.
$$

(a) Compute the upper and lower integrals

$$
\overline{\int_{0}^{1}} f(x) d x, \quad \text { and } \quad \underline{\int_{0}^{1}} f(x) d x
$$

(b) Is f Riemann integrable on $[0,1]$? Why or why not?

Math 670

5. Consider the equation

$$
x=(x-3)^{2}-\cos x
$$

(a) Prove that the equation has exactly two positive solutions.
(b) Let α be the smaller of the two solutions. Use Newton's Method to find an approximation of α with an absolute error of less than 10^{-5}.
(c) Prove that your approximation is sufficiently accurate.

Note: for this problem, you may not use any graphing or root finding capabilities on your calculator.
6. Write an efficient algorithm to solve an $n \times n$ linear system $A \mathbf{x}=\mathbf{y}$ where the matrix A has three nonzero diagonals as follows:

$$
A=\left[\begin{array}{ccccccccc}
a_{1} & 0 & d_{3} & & & & & & \\
b_{1} & a_{2} & 0 & d_{4} & & & & & \\
& b_{2} & a_{3} & 0 & d_{5} & & & & \\
& \cdot & \cdot & \cdot & \cdot & \cdot & & & \\
& & \cdot & \cdot & \cdot & \cdot & \cdot & & \\
& & & \cdot & \cdot & \cdot & \cdot & \cdot & \\
& & & & & b_{n-3} & a_{n-2} & 0 & d_{n} \\
& & & & & & b_{n-2} & a_{n-1} & 0 \\
& & & & & & & b_{n-1} & a_{n}
\end{array}\right], \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\cdot \\
\cdot \\
\cdot \\
x_{n-2} \\
x_{n-1} \\
x_{n}
\end{array}\right], \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
y_{3} \\
\cdot \\
\cdot \\
\cdot \\
y_{n-2} \\
y_{n-1} \\
y_{n}
\end{array}\right]
$$

Assume that A is nonsingular and that pivoting is unnecessary.
You should first convert to an upper-triangular system and then apply back-substitution. Fully exploit the sparsity pattern by writing everything in terms of the given vectors. Note: your "algorithm" can be in "pseudo-code" rather than the proper syntax of a well-established programming language.

