Recent Developments in Y-Short Tandem Repeat and Y-Single Nucleotide Polymorphism Analysis

J. M. Butler

National Institute of Standards and Technology Gaithersburg, Maryland United States of America

TABLE OF CONTENTS

	INT	RODUCTION	. 92
I.	Y-S	HORT TANDEM REPEAT MARKERS	. 93
	А.	Marker Discovery	. 93
	B.	Chromosomal Locations of Markers	. 93
	C.	Characteristics of New Markers	. 95
	D.	Population Studies	. 95
	E.	Genetic Genealogy Studies	. 96
II.	Y-S	HORT TANDEM REPEAT TYPING ASSAYS AND KITS	. 98
	A.	Approaches to Reliable Genotyping	. 98
	В.	Multiplex Polymerase Chain Reaction	. 98
	C.	National Institute of Standard and Technology Multiplex Assays	. 98
	D.	Commercial Kits	100
III.	Y-S	INGLE NUCLEOTIDE POLYMORPHISM MARKERS AND	
	TYI	PING ASSAYS	100
	А.	Available Markers	100
	В.	Unified Nomenclature for Y-Single Nucleotide Polymorphism	
		Haplogroups	102
	C.	Typing Technologies	102
	D.	SNaPshot Assay	102
	E.	Luminex Assay	103
	F.	Optimal Y-Single Nucleotide Polymorphism Markers	104
IV.	REF	FERENCE MATERIALS AND STANDARDIZATION	104
	А.	Available Reference Materials	105
	В.	Allele Nomenclature Issues	106
	C.	Validation and Interlaboratory Studies	106
	COI	NCLUSIONS	107
	ACI	KNOWLEDGMENTS	107
	REF	FERENCES	107
	AB	OUT THE AUTHOR	111

Recent Developments in Y-Short Tandem Repeat and Y-Single Nucleotide Polymorphism Analysis^a

REFERENCE: Butler JM: Recent developments in Y-single tandem repeat and Y-single nucleotide polymorphism analysis; Forensic Sci Rev 15:91; 2003.

ABSTRACT: This article reviews new genetic markers on the Y-chromosome and methods for analyzing these short tandem repeat (STR) and single nucleotide polymorphism (SNP) loci. Relative chromosomal locations for over 50 Y-chromosome STRs (Y-STRs) are described along with their repeat motif and allele range characteristics based on published population studies. Multiplex assays for typing many of these markers in a parallel fashion are discussed, as are newly available commercial Y-STR kits. Approximately 250 SNP markers are now catalogued along the Y-chromosome (Y-SNPs) with a unified haplogroup nomenclature describing their relative relationships. Technologies for typing these Y-SNPs are reviewed including primer extension and allele-specific hybridization methods. Finally, available reference materials for standardization of allele calls, Y-STR allele nomenclature issues, and published validation and interlaboratory studies are reviewed.

KEY WORDS: Forensic DNA typing, Luminex, multiplex PCR, SNaPshot, standard reference materials, STR nomenclature issues, Y-Chromosome, Y-SNP, Y-STR.

INTRODUCTION

Research in Y-chromosome markers, assays, and applications has seen tremendous growth in the past several years. This article reviews recent efforts in Ychromosome short tandem repeat (Y-STR) and single nucleotide polymorphism (Y-SNP) analysis. Two primary reasons for studying the Y-chromosome include male specificity in testing DNA mixtures and the ability to track paternal lineages. Y-STRs and Y-SNPs can be used for a number of human identity testing applications including forensic analysis of sexual assault evidence [6,16,18,36,37, 45,66,67,68,73,85,87,88], conducting missing persons investigations [21], performing deficient paternity testing [45,76,80], addressing historical questions [23], and supplementing genealogical research [48,89] (**Table 1**). In addition, Y-chromosome markers have been used to investigate genetic reasons for male infertility [46,58].

The desire to understand mankind's history and human migration patterns over time has fueled much of the Y-chromosome marker developments, particularly in the SNP arena [13,33,35,43,54,62,63,69,78,92,94,95,100,

Lable 1 . Areas of use in Y-chromosome festur
--

Use	Advantage
Forensic casework on sexual assault evidence	Male-specific amplification (can avoid differential extraction to separate sperm and epithelial cells)
Paternity testing	Male children can be tied to fathers in motherless paternity cases
Missing persons investigations	Patrilineal male relatives may be used for reference samples
Human migration and evolu- tionary studies	Lack of recombination enables comparison of male individuals separated by large periods of time
Historical and genealogical research	Surnames usually retained by males; can make links where paper trail is limited

^{*a*}Contribution of the U.S. National Institute of Standard and Technology (NIST). Not subject to copyright. Certain commercial equipment, instruments, and materials are identified in order to specify experimental procedures as completely as possible. In no case does such identification imply a recommendation or endorsement by NIST nor does it imply that any of the materials, instruments, or equipment identified are necessarily the best available for the purpose. 101]. Several hundred publications now exist describing population data with Y-chromosome markers. Internetaccessible databases house thousands of Y-STR profiles. The field of Y-chromosome research has grown rapidly in the past few years. The future looks promising for continued growth in Y-chromosome research and applications.

I. Y-SHORT TANDEM REPEAT MARKERS

A. Marker Discovery

In 1992, Lutz Roewer and colleagues described the first polymorphic Y-chromosome marker Y-27H39 now better known as the STR locus DYS19 [73]. For the next ten years, discovery of polymorphic tandem repeat markers on the Y-chromosome progressed much more slowly than for their autosomal counterparts. The year 2002 began with only about 30 markers available to researchers (Table 2). In the last year or so, the Ychromosome has been combed to uncover new STR markers and as of February 2003, information on more than 200 markers has been deposited in the Genome Database (GDB; http://www.gdb.org). The rapid growth in the discovery of new Y-STR markers is a direct result of the availability of DNA sequence information from the Human Genome Project and improved bioinformatics tools for searching DNA sequence databases [3]. Previously, extensive laboratory work was required to uncover new polymorphic Y-chromosome markers such as that described in White et al. [96]. However, much lab work remains to be done with these newly identified markers to determine their relative utilities.

In 1997, the European forensic community settled on a core set of Y-STR markers or "minimal haplotype" that includes DYS19, DYS389I/II, DYS390, DYS391, DYS392, DYS393, and DYS385 a/b with YCAII a/b as an optional marker to create an "extended haplotype" [19,52,75]. Most Y-chromosome data to date has been generated with these loci. In early 2003, the U.S. Scientific Working Group on DNA Analysis Methods (SWGDAM) selected a core set of markers that includes the 9 markers in the minimal haplotype plus DYS438 and DYS439. These loci are available in commercial Y-STR kits (see below). Although new markers will be added to databases as their value is demonstrated and they become part of commercially available kits, these 11 established markers are likely to continue to be important in future Y-STR research.

B. Chromosomal Locations of Markers

The efforts of the Human Genome Project have generated a publicly available human Y-chromosome sequence that is approximately 51 megabases (Mb) in size. However, a "heterochromatin" region around 20 Mb in size toward the end of the long arm of the Y-chromosome may never be completely deciphered [46,90]. The

Table 2. History of Y-STR marker discoveries over the last decade. Most commonly used markers include DYS19, DYS389I/II, DYS390, DYS391, DYS392, DYS393, and DYS385 a/b. Multi-copy markers are listed with "a/b" designations if they are duplicated. The total numbers of markers available are considered by both primer pair used to generate them and by products produced

Year	No. available (with multicopy)	Markers	Ref.
1992	1	DYS19	[73]
1994	5 (8)	YCAI a/b, YCAII a/b, YCAIII a/b (DYS413), DXYS156	[61]
1996	11 (14)	DYS389I/II, DYS390, DYS391, DYS392, DYS393	[74]
1996	14 (17)	DYF371, DYS425, DYS426	[44]
1997	16 (19)	DYS288, DYS388	[52]
1998	17 (21)	DYS385 a/b	[81]
1999	22 (26)	A7.1 (DYS460), A7.2 (DYS461), A10, C4, H4	[96]
2000	28 (32)	DYS434, DYS435, DYS436, DYS437, DYS438, DYS439	[3]
2001	30 (34)	DYS441, DYS442	[40]
2002	33 (37)	DYS443, DYS444, DYS445	[39]
2002	34 (38)	DYS462	[8]
2002	48 (56)	DYS446, DYS447, DYS448, DYS449, DYS450, DYS452, DYS453, DYS454, DYS455, DYS456, DYS458, DYS459 a/b, DYS463, DYS464 a/b/c/d	[72]
2002	177	DYS468-DYS596 (+129)	GDB ^a
2003	227	DYS597-DYS645 (+50)	GDB ^a

GDB: Genome Database (see http://www.gdb.org).

assembled human Y-chromosome sequence may be downloaded from the University of California-Santa Cruz Genome Bioinformatics website (http://genome.ucsc.edu) or the National Center for Biotechnology Information site (http://www.ncbi.nlm.nih.gov).

The availability of a human reference sequence now permits location of the various Y-STR markers along the Y-chromosome. Chromosomal positions were determined by performing a BLAT search [57] using the reference sequences defined in Table 3. The entire search across the human genome was performed in less than a minute for these 50 Y-STR markers, which include loci with published population data as of early 2003.

Relative positions of the tested markers are shown in **Figure 1**. The minimal haplotype loci, which have been used extensively in population studies, are shown on the left side of the chromosome diagram with all of the other markers on the right side. The sex-determining region SRY occurs at about position 2.56 Mb while the amelogenin gene AMEL Y falls at 6.70 Mb along the Y-chromosome. Of the minimal haplotype loci, only two occur along the short arm (p), DYS393 and DYS19. There is a heavy

94

concentration of recently discovered markers around the 14 Mb region in the long arm (q) of the chromosome. It is interesting to note that many of the markers that have a higher propensity for female cross-reactivity occur near the top of the short arm near the pseudoautosomal region of the Y-chromosome that can recombine with the X chromosome [43,46]. For example, DYS393 has been shown to have an X chromosome counterpart, DXYS267 [22].

The relative positions of several multi-copy Y-STRs noted in Figure 1 can be seen in more detail in **Figure 2**. For example, the two DYS385 alleles come from duplicated portions of the Y-chromosome that are facing away from one another and are 40,775 base pairs (bp) apart (Figure 2). Thus, the "forward" primer for DYS385 anneals to the bottom strand of one of the alleles but to the top strand in the other copy along the Y-chromosome. The YCAII "a" and "b" alleles face each other and are over 880,000 bases apart from one another along the chromosome (Figure 2). The "a" and "b" designations for these multi-copy alleles are arranged by allele size during electrophoretic measurement and not by physical position on the chromosome.

As noted at the bottom of Figure 2, if two alleles for a multi-copy locus are the same size (i.e., contain the same number of repeats), then they will appear as a single peak when amplified with a single primer pair. In the case

Figure 1. Chromosomal locations for commonly used and new Y-STR markers.

Figure 2. Examples of multi-copy Y-STRs markers DYS385, YCAII, and DYS464. Both directionality of alleles and distance apart along the Y-chromosome reference sequence are indicated.

Forensic Science Review • Volume Fifteen Number Two • July 2003

where the "a" allele is equal to "b" allele, the resulting peak is usually twice as high during electrophoretic analysis compared to situations where alleles "a" and "b" are not equal in size and can be individually resolved.

C. Characteristics of New Markers

Perhaps the most interesting polymorphic Y-STR discovered to date is DYS464 [72], which has at least four copies on the Y-chromosome and occurs at around 25 Mb near the DAZ region [46]. Analysis of the directionality of DYS464 sequences along the Y-chromosome indicates that it is really a duplicated duplicate locus rather than an independently quadruplicated one. The alleles within each pair are ~225 kilobasepairs (kbp) apart while the pairs are 1.4 Mb apart (Figure 2).

Examples of several peak patterns produced by amplifying the DYS464 a/b/c/d locus with a single primer pair are illustrated in **Figure 3**. While four peaks may be seen with equivalent heights during genotyping when all four alleles can be separated by size, peak patterns are often a more complex set of two or three imbalanced peaks. Thus, allele calls could be made by either taking the peak heights into account (e.g., 12,13,17) or by only considering the actual alleles seen (e.g., 12,13,17).

Many of the new Y-STRs recently discovered have desirable characteristics for forensic analysis. A high degree of polymorphism and a low degree of stutter product formation are valuable characteristics for STR markers when components of mixtures may need to be

Figure 3. DYS464 data. Up to four distinguished alleles may be observed with this quadruplicated polymorphic locus when amplified with a single primer pair.

Figure 4. Levels of stutter with various Y-STR markers. Arrows indicates stutter products.

resolved from one another. The dinucleotide YCAII [61], which is part of the European "extended haplotype" [75], is very polymorphic and does help resolve some common haplotypes. Unfortunately, YCAII has a high degree of stutter because it is a dinucleotide repeat and prone to strand slippage. Multiple stutter products are produced when amplifying YCAII, with some stutter products as high as 50% of the height of the true allele (**Figure 4**).

Penta- and hexanucleotide repeat loci exhibit a much lower degree of stutter and are therefore desirable in assays used for analysis of forensic evidence [9]. Of the 14 new Y-STR markers described by Redd et al. [72], five are pentanucleotides and one contains a hexanucleotide repeat (*see* **Table 3**). Electropherograms from the pentanucleotide DYS447 and the hexanucleotide DYS448 shown in Figure 4 illustrate that both these markers have less than 2% stutter. DYS447 and DYS448 also rank well in terms of allelic diversity against other markers tested in the same sample set [72, Schoske R, personal communication].

D. Population Studies

The Y-STR markers with the most use in sample testing to date are the "minimal haplotype" loci. These 9 markers (if one counts the two DYS385 alleles as separate "loci") have been used to generate more than 16,000 profiles in the Y-STR Haplotype Reference database across approximately 100 European, U.S., and Asian populations (*see* http://www.ystr.org). Within the past several years, studies with additional Y-STR loci beyond the minimal haplotype loci have been conducted. **Table 4** summarizes the markers evaluated and the number of samples examined. While the number of population studies

Marker name	Allele range (repeat no.)	Repeat motif	GenBank accession	Reference allele
DYS19	10–19	TAGA	AC017019 (r&c)	15
DYS385 a/b	7–28	GAAA	AC022486 (r&c)	11
DYS389 I	9–17	(TCTG) (TCTA)	AC004617 (r&c)	12
DYS389 II	24-34	(TCTG) (TCTA)		29
DYS390	17-28	(TCTA) (TCTG)	AC011289	24
DYS391	6-14	TCTA	AC011302	11
DYS392	6–17	TAT	AC011745 (r&c)	13
DYS393	9–17	AGAT	AC006152	12
YCAII A/B	11-25	CA	AC015978	23
DYS388	10-18	ATT	AC004810	12
DYS425	10-14	TGT	AC095380	10
DYS426	10-12	GTT	AC007034	12
DYS434	9–12	TAAT (CTAT)	AC002992	10
DYS435	9–13	TGGA	AC002992	9
DYS436	9–15	GTT	AC005820	12
DYS437	13-17	TCTA	AC002992	16
DYS438	6–14	TTTTC	AC002531	10
DYS439	9–14	AGAT	AC002992	13
DYS441	12–18	CCTT	AC004474	14
DYS442	10-14	TATC	AC004810	12
DYS443	12–17	TTCC	AC007274	13
DYS444	11–15	TAGA	AC007043	14
DYS445	10–13	TTTA	AC009233	12
DYS446	10-18	TCTCT	AC006152	14
DYS447	22–29	TAAWA compound	AC005820	23
DYS448	20-26	AGAGAT	AC025227	22
DYS449	26–36	TTTC	AC051663	29
DYS450	8-11	TITA	AC051663	9
DYS452	27-33	YATAC compound	AC010137	31
DYS453	9–13	AAAT	AC006157	11
DYS454	10-12	AAAT	AC025731	11
DYS455	8-12	AAAT	AC012068	11
DY 5456	13-18	AGAI	AC010106	15
DY 5458	13-20	GAAA	AC010902	16
D Y S 4 59 a/b	/-10		AC010682	9
DYS460(A7.1)	/-12 9 14	AIAG	AC009235 (r&c)	10
DYS461 (A/.2)	8-14	(IAGA) CAGA	AC009255 (r&c)	12
D15402	0-14 19 07		AC007244	11
DIS403	18-27	AARGG compound	AC007275 X17254	24
V CATA U/	11-20 8 12 (25 20)		$\Lambda 1/334$ $\Lambda C011751 (r % a)$	13
1-0АТА-П4 V САТА С4	$20^{-13}(23-30)$	TSTA compound	G42673	12
Y-GATA-04	13-18	TAGA	AC011751	13
1 0/1/1-/110	15-10	1110/1	110011/01	15

Table 3. Information on selected Y-STR markers. Reference allele refers to the number of repeats found in the GenBank sequence, which must sometimes be made reverse and complement (r&c) in order to maintain consistency with previously used repeat motifs

performed with new markers has grown, many of these studies have not evaluated sample sets across all of the available markers and thus do not permit direct comparisons of the new and more commonly used Y-STRs [72]. The recent availability of commercial kits and new multiplex PCR assays for Y-STR markers will allow information from more markers to be collected across larger numbers of samples.

E. Genetic Genealogy Studies

Several companies are currently promoting the use of Y-chromosome testing for inferring genealogical relationships particularly for surname testing [48,89]. These efforts are drawing in thousands of samples from enthusiastic genealogists who often post their results on the Internet and become very interested in ongoing Ychromosome research efforts. The genetic genealogy companies include Oxford Ancestors (Oxfordshire, England), FamilyTree DNA (Houston, TX), and Relative Genetics (Salt Lake City, UT). Relative Genetics performs

Population N	lo. of samples	Markers tested	Ref.	
83 European populations	12,675	Minimal haplotype loci	www.ystr.org ([75])	
U.S. Caucasian, African American, Hispanic	1705	Minimal haplotype loci (628 C, 599 AA, 478 H)	<u>www.ystr.org/usa</u> ([56])	
14 Asian populations	1924	Minimal haplotype loci	www.ystr.org/asia	
U.S. Caucasian, African American, Hispanic	517, 535, 245	Minimal haplotype loci + 438, 439	www.reliagene.com	
YCC cell lines	73	36 Y STRs: 464, YCAII, 449, 446, 463, 448, 447, 458, 459, 456, 439, 452, 461, 438, 450, 460, 426, 453, 388, 454, 434, 455, G10123, DYF371, DXYS156, H4	[72]	
U.S. Caucasian	148	26 Y STRs: 464, 449, 458, 456, 447, 459, 439, 446, 463, 448, 452, 437, 426, 388, 455, 453, 450, 454	[72]	
Central Africa	408	16 Y STRs: 388, 425, 426, 434, 435, 436, 437, 438, 439	[100]	
Chinese	104	C4, A10	[102]	
Chinese (Han)	81	434, 435, 436, 437, 438, 439	[38]	
Equatorial Guinea	57	434, 437, 439	[1]	
Galicia (NW Spain)	212	437, 438, 439, A10, A7.1, A7.2, C4, H4	[70]	
Iberian Peninsula	768	19 Y STRs: 388, 434, 435, 436, 437, 438, 439, 460, 461, 462	[8]	
Italian	131	437, 438, 439	[26]	
Japanese	184	441, 442	[40]	
Japanese	190	443, 444, 445	[39]	
Japanese	294	14 Y STRs: 435, 436, 437, 438, 439, 460 (A7.1), H4	[91]	
Korean	316	Minimal haplotype + 388	[86]	
Pakistan	278	434, 435, 436, 437, 438, 439	[3]	
Pakistan	718	16 Y STRs: 388, 425, 426, 434, 435, 436, 437, 438, 439	[69]	
Portuguese	212	434, 437, 438, 439, A10	[29]	
Portuguese	208	16 Y STRs: 460 (A7.1), 461 (A7.2), C4, H4	[4]	
Portugal, Macao, Mozambique	69, 59, 64	434, 437, 438, 439	[31]	
U.S. Caucasian	244	27 Y STRs: 388, 426, 437, 438, 439, 447, 448, 450, 456, 458, 460, 464, YCAII, H4	Schoske ^{<i>a</i>}	
U.S. African American	260	27 Y STRs: 388, 426, 437, 438, 439, 447, 448, 450, 456, 458, 460, 464, YCAII, H4	Schoske ^a	
U.S. Hispanic	143	27 Y STRs: 388, 426, 437, 438, 439, 447, 448, 450, 456, 458, 460, 464, YCAII, H4	Schoske ^a	

Table 4. Y-STR population studies including loci beyond the minimal haplotype markers. Loci names have been shortened to conserve space (e.g., DYS438 is 438)

the testing for Ancestry.com and owns a company named GeneTree (San Jose, CA). In addition, a large effort is under way at Brigham Young University (Provo, UT) in their Molecular Genealogy Research Group to gather 100,000 samples with at least four-generation pedigrees and look at a variety of DNA markers including Y-STRs.

Oxford Ancestors (http://www.oxfordancestors.com) tests 10 Y-STRs: DYS19, DYS388, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS425, and DYS426. FamilyTree DNA (http://www.familytreedna. com) testing is performed in Mike Hammer's University of Arizona laboratory and generates results at 25 Y-STRs: DYS19, DYS388, DYS389I/II, DYS390, DYS391, DYS392, DYS393, DYS385 a/b, DYS426, DYS437, DYS439, DYS447, DYS448, DYS449, DYS454, DYS455, DYS458, DYS459 a/b, and DYS464 a/b/c/d. Relative Genetics (http://www.relativegenetics.com) and GeneTree (http://www.genetree.com) provide their clients with information from the following 24 Y-STRs: DYS19 (DYS394), DYS388, DYS389I/II, DYS390, DYS391, DYS392, DYS393, DYS385 a/b, YCAII a/b, DYS426, DYS437, DYS438, DYS439, DYS460, DYS461, DYS462, GGAAT1B07, Y-GATA-A4 (DYS439), A10, C4, and H4.

II. Y-STR TYPING ASSAYS AND KITS

A. Approaches to Reliable Genotyping

Reliable Y-STR typing results may be obtained in one of three different approaches as illustrated in **Figure 5**. When STR markers are first discovered and are being evaluated in research laboratories, typing of samples is often performed with fixed bin genotyping macros that rely on high run-to-run precision and internal size standards (Figure 5, panel A). This approach easily accommodates new alleles as they are discovered. A sequenced reference sample, containing only one of the alleles, can be used to calibrate repeat number to PCR product size under particular electrophoretic conditions. For example, a sample containing 14 TAGA repeats at DYS19 may size at 246.50 bp; a template with 4-bp increments across the expected allele range could then be used to convert measured size into repeat number.

The most commonly used method in forensic laboratories involves allelic ladders where samples are compared to a set of common alleles run under the same

(A) High-precision sizing	(with sequenced reference	sample for calibration)
---------------------------	---------------------------	-------------------------

	3	10.00		-0		- 11		1.0		10
ALC: NO DE	RU LOLA	(WI)	2.0	100	ľ.	6	6.51	1010		and.
DAIE a										
14	E to g howard.	peek.	67	5.90	50		3	15 B.D	6.16	791.31
	Regiment	peak	85	262	- 10			1 10	1.0	78111
	Explanet.	Lange of	4.71	2.6/5.	- 580			in the	6.5	78111
5.5	E.o.g.hannet.	La ma	40	2500	540			rs equ	6.6	781.11
1.6	85,934-03	Deak.	後代	294.	.540	Ξ.	1.1	n te	KH.	76111
1.7	Explanation (Comparison)	i wash	an te	2100	. 1.82		3.3	11 han	iin.	7811

If PCR Product Size = 246.35 bp, then allele = 14

(B) Allelic ladder allele sizes compared to sequentially run samples

electrophoretic conditions [9,24,88] (Figure 5, panel B). The ladder is run with each batch of samples and contains the same internal size standard as the individual samples being tested. Allele sizes in the ladder sample are then compared to sequentially run samples. Each allele in the allelic ladder should be sequenced and the alleles should span the expected range of common alleles [24]. A company supplying the allelic ladder as part of a kit typically performs sequencing of the alleles in the ladder. The major advantage of using an allelic ladder is that results can easily be compared across laboratories that may be using different electrophoretic conditions [9].

An approach recently introduced by OligoTrail LLC (Evanston, IL) involves locus-specific brackets (LSBs). LSBs are artificially created alleles designed to be outside the range of common alleles that provide an internal calibration unique to each STR marker [17] (Figure 5, panel C). They can be used to adjust for electrophoretic run-to-run differences. No allelic ladder or separate internal size standard is needed with this approach. Since the LSBs have been sequenced, they provide the calibrants to accurately convert electrophoretic mobility of a PCR product into the number of repeats present. Another advantage is that all four colors in a 4-dye detection system may be used for labeling the PCR products because a separate dye channel is not needed for the internal size standard.

B. Multiplex Polymerase Chain Reaction

More than one Y-STR marker can be examined simultaneously with multiplex PCR amplification. Multiplexing saves time and effort as well as conserving precious sample when attempting to gather information from many genetic markers [9,60]. Good PCR primer design [10,12,83] and high-quality primers [11,83] are essential to obtaining successful multiplex reactions. Multiplex PCR primer design and optimization is a greater challenge than designing singleplex PCR primer pairs because multiple primer annealing events need to occur at the same annealing conditions without interfering with one another [60,83].

C. National Institute of Standard and Technology Multiplex Assays

Our laboratory at the U.S. National Institute of Standards and Technology (NIST) has been actively involved since 2000 in developing new Y-STR assays and improving the standardization of information on Ychromosome markers. Multiplex PCR has been used to successfully co-amplify up to 20 different PCR products from Y-STR markers [12].

Forensic Science Review • Volume Fifteen Number Two • July 2003

The first multiplex developed in our laboratory involved 10 loci: DYS19, DYS391, DYS392, DYS435, DYS436, DYS437, DYS438, DYS439, Y-GATA-A7.1 (DYS460), and Y-GATA-H4. The primers and PCR conditions were described for this multiplex at the International Symposium on Human Identification in October 2000 [77] and made available on our STRBase website (http://www.cstl.nist.gov/biotech/strbase/ y_strs.htm). A complete description of the primers and the multiplex design process was published more recently [83]. Laboratories in Finland, Japan, and the United States have performed population studies with this multiplex [34,49,91]. These loci were selected to examine newly discovered markers [3,96] for evaluation and possible use in additional assays. The Y-STRs DYS435 and DYS436 showed little variation in the samples tested and were therefore dropped from consideration.

The Y-STR 20plex assay developed in the summer of 2001 includes the 11 markers of the European extended haplotype, the trinucleotide loci DYS388 and DYS426, the tetranucleotide loci DYS437, DYS439, GATA A7.1 (DYS460) and H4, the pentanucleotide loci DYS438 and DYS447, and the hexanucleotide marker DYS448 [12]. Efforts were made to avoid X-chromosome homology in the primer design, particularly in the case of DYS391 [15,27]. PCR product size ranges were packed together through careful examination of known allele ranges in order to keep all alleles less than 350 bp. Allelic ladders were not created with our original multiplex assays because

Figure 6. NIST Y-STR multiplexes. The same sample was amplified with four different multiple assays. The DYS marker names are listed above the corresponding PCR product peak.

in many cases we did not know the full allele range or have available alleles to create one. Instead, population data has been collected with a high degree of intralaboratory precision along with sequenced reference materials to correlate sizing results to allele calls (see section on reference materials below).

More recently an 11plex assay has been developed that generates Y-STR amplicons using the markers DYS447, DYS448, DYS450, DYS456, DYS458, DYS385 a/b, and DYS464 a/b/c/d (Schoske, in preparation). The PCR product sizes for these new markers were designed to allow incorporation of the minimal haplotype loci around

Table 5. Comparis	Cable 5. Comparison of Y-STR markers present in commercial kits and NIST multiplex assays indicated by dye label olor										
Marker	Y-Plex TM 6	Y-Plex TM 5	PowerPlex [®] Y	NIST 20plex	NIST 11plex	NIST 10plex					
DYS19	Blue		Green	Yellow		Blue					
DYS385 a/b	Yellow		Yellow	Green	Green						
DYS389 I		Blue	Blue	Blue							
DYS389 II	Blue										
DYS390	Yellow		Yellow	Green							
DYS391	Yellow		Blue	Blue		Green					
DYS392		Yellow	Green	Yellow		Yellow					
DYS393	Blue		Yellow	Green							
DYS438		Yellow	Green	Blue		Yellow					
DYS439		Green	Blue	Blue		Blue					
DYS437			Green	Blue		Yellow					
YCAII a/b				Green							
DYS388				Yellow							
DYS426				Green							
DYS435						Blue					
DYS436						Blue					
DYS447				Red	Blue						
DYS448				Red	Blue						
DYS450					Yellow						
DYS456					Yellow						
DYS458					Yellow						
DYS460 (A7.1)				Yellow		Green					
DYS464 a/b/c/d					Green						

the 11plex amplicons. **Figure 6** illustrates the NIST Y-STR multiplex assays completed as of Fall 2002. The original 10plex, published 20plex, new 11plex, and an 18plex that combines the minimal haplotype loci and the 11plex markers are shown using the same male DNA sample. These multiplex assays, particularly the 20plex and 11plex, have allowed our laboratory to rapidly generate population data on hundreds of samples and directly evaluate which markers are most polymorphic in the same sample set (Schoske, in preparation). However, most forensic laboratories are more comfortable with using commercial kits due to primer quality control issues and the availability of allelic ladders. Several Y-STR kits are now available and more should be in the near future (**Table 5**).

D. Commercial Kits

ReliaGene Technologies (New Orleans, LA), Serac (Germany), and Promega Corporation (Madison, WI) have or will soon release Y-STR kits. Applied Biosystems (Foster City, CA) is also evaluating the Y-STR kit market.

Figure 7. Example results from ReliaGene's Y-PlexTM kits.

ReliaGene has produced two commercially available kits for typing Y-STR markers. Y-PLEXTM 6 examines DYS19, DYS389II, DYS390, DYS391, DYS393, and DYS385a/b. Y-PLEXTM 5 amplifies DYS389I/II, DYS392, DYS438, and DYS439. Use of both Y-PLEXTM kits will permit evaluation of results at 11 loci—the minimal haplotype plus DYS438 and DYS439 (**Figure 7**). The ReliaGene website (http://www.reliagene.com) permits database searches at the 11 loci in their two kits. Validation studies have been completed on the Y-PLEXTM 6 kit showing that it has sensitivity down to 200 pg and can detect full male profiles in mixture samples containing as much as 1:125 male-to-female DNA [88]. Example results from the ReliaGene Y-PLEXTM 5 and Y-PLEXTM 6 kits obtained in our laboratory are shown in Figure 7. The Serac kits amplify the minimal haplotype loci and the sex-typing marker amelogenin. The genRES[®] DYSplex-1 kit contains DYS389I/II, DYS390, DYS391, DYS385 a/b, and amelogenin while genRES[®] DYSplex-2 has DYS19, DYS389I/II, DYS392, and DYS393. These kits are used primarily in Europe.

Promega Corporation began working on a Y-STR kit in mid-2002 using the NIST 20plex assay [12] as a framework. Primers were adjusted to improve malespecificity and allelic ladders were created. Prototype kit materials were supplied to a handful of laboratories in December 2002 for evaluation. Their kit co-amplifies 12 Y-STR loci including the minimal haplotype loci, DYS438, DYS439, and DYS437. Allelic ladders from the prototype kit are shown in **Figure 8**.

III. Y-SINGLE NUCLEOTIDE POLYMORPHISM MARKERS AND TYPING ASSAYS

A. Available Markers

Biallelic markers, such as single nucleotide polymorphisms (SNPs) and insertion/deletions (indels), represent another important class of markers on the Ychromosome. These markers are sometimes referred to as unique event polymorphisms (UEPs) because they have a much lower rate of mutation than STRs ($\approx 10^{-8}$ vs. $\approx 10^{-3}$ mutations per generation) [20,53,55]. SNPs only have two alleles and therefore provide less information per marker than STRs that can have a dozen or more alleles (or allelic combinations in the case of multi-copy Y-STRs). Biallelic markers provide a low-resolution view of a paternal lineage much like a satellite picture of a continent instead of an image taken by a low-flying aircraft that is capable of picking up higher resolution details.

The first biallelic marker found on the Y-chromosome was an Alu insertion (DYS287) abbreviated YAP for Ychromosome Alu polymorphism, which is present in many Africans and absent in most European populations

Figure 8. Promega's PowerPlex[®] Y prototype allelic ladders.

Forensic Science Review • Volume Fifteen Number Two • July 2003

Network<	Tabl	Table 6. Characteristics of 246 Y-SNP markers [98]. (See also http://ycc,biosci.arizona.edu/nomenclature_system/data.html.)										tml.)
M2 A>G E3 M70 A>C K2 M13 S-C-T H10. M208 C>T M4 A>G M M72 A>G H13 M14 To-T A2 M208 A>G M6 T>C A M14 To-T Q2 M200 A>G M6 T>C A M14 To-T Q2 M201 A>G M6 T>C A M16 To-C RA M71 Co-T R14 Haphret K3 A>G K2 K3 M214 To-C R3 M10 T>C E36 M17 C>T C36 H14 Haphret K3 M214 To-C R3 M10 T>C E36 M115 To-C R3 M31 To-C R3 M31 To-C R3 M31 To-C M34 M31 M31 M321 M31 To-C M33 M321 M31 M321	Marke	erAncest/Der	YCC Hg	Marker	Ancest/Der	YCC Hg	Marker	Ancest/Der	r YCC Hg	Marker	Ancest/Der	YCC Hg
Min Cort Q3 M11 Cort A2 M14 ToA A2 M209 A-ST M5 Cort M M23 2-bp DP R1M M14 ToA A2 M209 A-ST M5 Cort M M23 2-bp DP R1M M14 ToA A2 M211 Cort B2M M5 Cort Cort A3 PR M14 ToAC B1 M213 ToAC FR M6 Cort Cort Cort Cort M14 Hot B1 M213 ToAC FR M10 ToAC K-R M17 Cort Cort M14 Hot B2 B1 M213 ToAC Cort Cort Cort M11 M11 Aod L M81 Cort E30 M11 M30 Cort Cort Cort Cort Cort Cort Cort M31 Good M211 M213 Cort Cort M31 M31 Good M220 Cort Cort Cort M31 M31 M32 M320 M320 Cort Cort M31 M311 M33 Cort M31 <	M2	A->G	E3a	M70	A->C	K2	M138	C->T	H1c	M207	A->G	R
Met As-G Mi Mode To-C Mode Mo	M3	C->T	Q3	M71	C->T	A2	M139	5G->4G	B-R	M208	C->T	
M5 C>T M M73 2.bp DP R1b4 M144 C>T Q2 M210 C>T B330 M7 C>G 0.34 M75 G>A E2 M45 G>A D2E M211 C>A E M9 C>G R.R M77 C>T C3C M14 A-SG B1 M214 T-SC 0 M11 A>G L M81 C>T E3D1 M148 A>G E3D3 M216 C>T C G M11 A>G L M81 C>T E3D3 M141 MAG D2D3 M216 C>T C C C C C C C C C C C C C M315 C>A M316 C>A M318 A>G C M314 T>C M318 A>G M314 T>C M314 T>C M314 M323 C>C C M318 A>G	M4	A->G	М	M72	A->G	I1a3	M141	T->A	A2	M209	A->G	
Me T-SC A2 MF4 G-SA P.R MH4 T-SC A3b M211 C-ST B2bb M8 G-SA C1 MF6 T-SG L1 M44 A-SC B1 M212 C-SC F.R M10 T-SC E3a M214 T-SC B1 M214 T-SC B1 M214 T-SC F.R M10 T-SC E3a M214 C-ST E3b1 M148 A-SC Eb1a M216 C-ST C M13 G-SC A3b M22 A3b2 H1b M150 C-ST B2a1 M216 C-ST C M14 T-SC A2b M151 G-SA D2a1 M216 C-ST E3b1 M14 T-SC R1a1 M381 C-ST E3b1 M151 G-SA M212 G-SA M213 G-SC M141 T-SC M381 A-SC E3b21 M22b1 M22b1	M5	C->T	М	M73	2-bp DE ^a	R1b4	M143	G->T	Q2	M210	A->T	
M7 C>G O3d M7 G>A E2 M8 G>A D=E M213 T>C FA M9 C>G K M7 C>T C3C M14 1>p1N°(T) K3 M214 T>C O M10 T>C Ga6 M7 C>T C3D M414 A>G E3A M216 C>T C M M11 A>G L M81 C>T E3D M14 A>G BA M217 A>C C C C M M14 T>C AAB M21 C>T C T M15 A>GA M21 M21 C>T M21 A>C M35 C>A C K36 M21 M21 A>C T M35 C>A K36 M24 M17 C>T M36 A>C M36	M6	T->C	A2	M74	G->A	P-R	M144	T->C	A3b	M211	C->T	B2b4b
M8 G>T C1 M76 T>G L1 M46 A>C B1 M121 T>C FR M10 T>C E3a6 M78 C>T E3b1 M148 A>G Eb1a M121 A>G C T C G M141 A>G E51a M141 A>G E51a M141 S G C G G M141 T>C A M141 T>C G G G M141 T>C A M141 T>C A M141 T>C A M141 T>C C S M141 T>C A M141 M2C A C S M141 M342 A C C S M141 M343 M341 M341 M341 M342 M341 M342 M341 M341 M344 M341 M3	M7	C->G	O3d	M75	G->A	E2	M145	G->A	D-E	M212	C->A	
M9 C>G K.R. M77 C>T C3c M14 1spN*(T) K3 M214 T>C O M11 A>G L M81 C>T E3b1 M14 A>G E3a3 M216 C>T C M13 G>C A3b2 2bp H1 M150 C>T E3a M217 A>C C T M14 T>C A3b2 M3b C>T E3a M217 A>C C T M15 Aph D* D1 M86 T>C K M15 C>T E3a M21 C>T K M31 C>T M32 C>T M32 C>T M32 C>T M32 C>T M33 C>T M34 C>T M34 C>T M34 C>T M34 C>T M34 <t< td=""><td>M8</td><td>G->T</td><td>C1</td><td>M76</td><td>T->G</td><td>L1</td><td>M146</td><td>A->C</td><td>B1</td><td>M213</td><td>T->C</td><td>F-R</td></t<>	M8	G->T	C1	M76	T->G	L1	M146	A->C	B1	M213	T->C	F-R
	M9	C->G	K-R	M77	C->T	C3c	M147	$1-bp IN^{a}(T)$	K3	M214	T->C	0
Min A>G L M81 C>T Eb2 M149 G>A Eb3 M216 C-A>C C3 M13 G-SC AB2 M22 Zapp H1 M150 G>A D2b2 M218 C>T C3 M15 M9 P D1 M85 C>A Ebb M152 C>T Eal M219 A>C C3 A>C M15 App IN* D1 M85 T-5C R1al M151 G>A R1b6 M223 C>T T M17 G4C-36 R1al M88 A>G O2al M151 G>A R1ab M223 C>T F M11 M49 C>T< F.R M150 A>G R1ab M223 C>T E3a M21 A>G L M91 T-S <t< th=""> C<a< th=""> M153 A>G R1ab M20 A>G A M22 A>G A A M22 A>G L M93 C>T< CA M153 A>G A A A <</a<></t<>	M10	T->C	E3a6	M78	C->T	E3b1	M148	A->G	Eb1a	M215	A->G	
	M11	A->G	L	M81	C->T	E3b2	M149	G->A	E3a3	M216	C->T	С
Mi3 G-SC A3B2 M82 C-3bp H1b M151 G-SA D2b2 M181 C-T M15 9bp IN* D1 M86 T-SC CST Bala M219 A-SG A M16 G-SA M2a M37 T-SC R1ale M154 T-SC M2a4 M223 G-SA M17 4G-3G R1a1 M88 A-SG O2a1 M155 G-SA M244 M223 G-SA M19 T-SA Q3a M90 C-SG E2b M157 A-SG R1ab M224 P14 C-ST E3a M21 A-SG L M93 C-ST C3a M160 C-AG 11b2a P4 C-ST R2a M23 A-SG A2 M94 C-SA CAB M164 T-SC Q3b A-SC R2 P5 C-ST R2a M26 A-S M18 M56 C-ST CAB	M12	G->T	J2e	M82	-2bp	H1	M150	C->T	B2a	M217	A->C	C3
	M13	G->C	A3b2	M82	-2bp	H1b	M151	G->A	D2b2	M218	C->T	
	M14	T->C	A2	M85	C->A	E2b	M152	C->T	B2a1	M219	T->C	
Mi6 C>A Ma2 M82 A>G V21 M21 G>A M18 2+p IN* Rial M88 A>G C>T F-R M15 G>A M224 C>T M18 2+p IN* Rial M89 C>G E-R M155 G>A Lab M24 A>C E-S E-S M27 A>C Rialb YAB Alac-Aabab DE M20 A>G L M91 T>C Zi1 M159 A>C Riab P1 C>T E3 M22 A>G L M93 C>T C3 M66 A Riab P4 C>A A A M23 A>G A M96 G>C B M163 A>C J22 P8 C>T A B B A C B A A B A A C R A A C>T A A A A	M15	9-bp IN ^a	D1	M86	T->G	C3c	M153	T->A	R1b6	M220	A->G	A3b
	M16	C->A	M2a	M87	T->C	R1a1c	M154	T->C	E3a4	M221	G->A	
	M17	4G->3G	R1a1	M88	A->G	O2a1	M155	G->A		M223	C->T	
	M18	2-bp IN ^a	R1b1	M89	C->T	F-R	M156	A->G	E3a6	M224	T->C	
	M19	T->A	Q3a	M90	C->G	E2b	M157	A->C	R1a1b	YAP	Alu>Alu+	D-E
	M20	A->G	L	M91	9T->8 T	Α	M158	G->A	J2d	P1	C->T	E3a
	M21	A->T	I1a2	M92	T->C	J2f1	M159	A->C	O3c	P2	C->T	E3
	M22	A->G	L	M93	C->T	C3a	M160	A->C	R1b7	P3	G->A	A2
M25 G>C Q2 M95 C>T Q2 M164 T>C D32 D22 P5 C>T A2 M26 G>A H10 M96 G>C E M164 T>C 03b P6 G>C B2b1a M27 C>G A1 M99 I-bp DE" J2e1a M168 C>T C-R P9 C>A C>R M31 G>C A1 M10 C>T O1a M169 T>C<	M23	A->G	A2	M94	C->A	B-R	M161	C->A	I1b2a	P4	C->T	A2
	M25	G->C	Q2	M95	C->T	O2a	M163	A->C	J2f2	P5	C->T	A2
	M26	G->A	I1b2	M96	G->C	Е	M164	T->C	O3b	P6	G->C	B2b1
	M27	C->G	L1	M97	T->G	H1b	M165	A->G	"E3a5, E3b2b"	P7	T->C	B2b4
	M28	T->G	A3a	M98	G->C	E2b	M166	G->A	J2f2	P8	G->A	B2b4a
	M30	G->A	B2b3	M99	1-bp DE^a	J2e1a	M168	C->T	C-R	P9	C->A	C-R
	M31	G->C	A1	M101	C->T	Ola	M169	T->C	B2b2	P14	C->T	F-R
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M32	T->C	A3	M102	G->C	J2e1	M170	A->C	I	P15	C->T	G2
	M33	A->C	E1	M103	C->T	Olb	M171	G->C	A3b2a	P16	A->T	G2a
M35 G-SC Esb M106 A-SG M M173 A-SC R1 P19 T-SG I M36 T-SG H1a M107 A-SG E3b2a M174 T-SC D P20 CDE ^a G1 M38 T-SG C2 M109 C>T B2a1 M175 -5bp O P21 C>A N3a1 M38 T-SG C2 M109 C>T B2a1 M175 -5bp O P21 C>A N3a1 M43 A-SG B2a2a M111 2-bp (TT) DE ^a O2a1 M180 T-SC B P28 C>T A2b M44 G-SA B2a2 M113 A-SC M181 T-SC B P28 C>T A2b M44 G-SA P2 M114 T-SC A2a M183 A>C P31 T-SC O2 M44 G-SA P2 M117 4-bp DE ^a M184 A>G P36 G-SA Q A3b1 M119 T-SC D2 M24	M34	G->T	E3b3a	M105	C->T	C1	M172	T->G	J2	P18	C->T	G2a1
M36 17-5C PL PL DD P20 CDB [#] G1 M37 C-T TIb.Rb2" M109 C>-T B2ab M175 -5bp O P21 C>A N3a M38 T->G C2 M109 C>-T B2ab M175 -5bp O P21 C>A N3a M38 T->G C2 M109 C>-T B2ab M178 T->C N3a P22 (M104) G/A->A M2 M44 C-SC B2 D2 C>A R2h M180 T->C P27 G->A P.R M44 G->C E1a M113 A->G O3d1 M182 C>T B2 P29 A->C E M44 G->C E1a M113 A->G O3d1 M183 A>C P31 T->C O2a M44 G->A J2a M116 T->C A2a M183 A>C P33 T>C C C2a M44 T-SC O1b M118 A-ST M3b2b	M35	G->C	E3b	M106	A->G	M	M173	A->C	R1	P19	T->G	l
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M36	T->G	Hla	M107	A->G	E3b2a	M174	T->C	D	P20	$C DE^{a}$	GI
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M37	C->T "	11b,R1b2"	M108	T->C	"B2a2, B2b3a"	M175	-5bp	0	P21	C->A	N3a1
M39C DE*H1cM1101->CO1bM179C>TP25C>AR1bM42A>GB2a2aM112C>TO2a1M180T->CBP28C>TA2bM44G>CElaM113A>GO3d1M182C>TB2P29A>CEM45G>AP.RM114T->CA2aM183A>CP31T->CO2M47G>AJ2aM115C>TB2b2M184G>AP33T->CC2aM48A-GC3cM115C>TB2b2M184G>AP33T->CC2aM48A-GC3cM115C>TB2b2M185C->TP44G>AQM49T->CA2M1174-bp DE*O3e1M186C->TP44G>AC3M50T->CO1bM118A->TA3b2bM188C->TP44G-AEM50T->CO1bM118A->CO1M189G->TMSRY ₀₈₁₈ G->AEM51G>AE2bM1215 bp DE*O3aM191T->CSRY ₁₀₈₁₄ G->AP.AEM54G->AE2bM1215 bp DE*O3aM192C->TSRY ₁₀₈₁₄ G->AP.AR1aM55T->CD2M122T->CO3M192C->TSRY ₁₀₈₁₄ G->AP.AR1aM55A->CA2	M38	T->G	C2	M109	C->T	B2a1	M178	T->C	N3a	P22 (M104)	G/A->A	M2
M42 A>T B-R M111 2-bp (T1) DE" O2a1 M180 T>C P27 G-SA P-R M43 A>G B2a2a M112 G-SA B2b M181 T>C B P28 C>T A2b M44 G-SC Ela M113 A>G O3d1 M182 C>T B2 P29 A>C E M45 G-SA P.R M114 T>C A2a M183 A>C P31 T>C O2 M47 G-SA J2a M115 C>T B2b2 M184 G-SA P33 T>C C2a M44 G-SA M117 4-bp DE" O3e1 M186 1-bp DE" M P37 T-SC D2 M50 T>C O1b M118 A>T A3b2b M188 C>T P44 G-SA E M51 G-SA A3b1 M19 A>C O1 M189 G-ST M SRY ₄₀₆₄ G-SA E M51 G-SA E2b M121 5 bp DE"<	M39	C DE ^a	HIC	MIIO	T->C	Olb	M179	C->T		P25	C->A	RIb
M44A>GB2a2aM112G>AB2bM181I>CBP28C>1A2bM44G-CElaM113A>GO3d1M182C>TB2P29A>CEM45G>AP.RM114T>CA2aM183A>CP31T>CO2M47G>AJ2aM115C>TB2b2M184G>AP33T>CC2aM48A>GC3cM116.2"A>C, triallelic"D2b,E3a2M185C>TP36G->AQM49T>CA2M1174+bp DE"O3e1M186I-bp DE"MP37T>CD2M50T>CO1bM118A>TA3b2bM188C>TP44G->AC3M51G->AA3b1M119A>CO1M189G>TMSRY ₀₆₅₄ G->AEM52A>CHM120T>CQM190A>GA3bSRY ₁₀₈₅₁₆ A>-CK1M54G->AE2bM1215 bp DE"O3aM191T>GSRY ₁₀₈₅₁₆ A>-GB-RM55T>CD2M122T>CO3aM192C>TSRY ₁₀₈₅₁₆ G->AR1aM56A-SR1a1aM123G->AE3b3M1934-bp IN"92R7G->AP.RM57+1bpD2M124C>TP1M194H>CQ3bTat(M46)T>CN3M57A-SR3	M42	A->1	B-R	MIII	$2-bp(TT)DE^{a}$	O2a1	M180	T->C		P27	G->A	P-R
M44 G->C E1a M113 A->G O301 M182 C>T B2 P29 A->C E M45 G->A P.R M114 T->C A2a M183 A->C P31 T->C O2 M48 G->A J2a M115 C->T B2b2 M184 G->A P33 T->C C2a M48 A->G C3c M116.2<"A->C, triallelic" D2b,E3a2 M185 C->T P36 G->A Q M50 T->C A2 M117 4-bp DE ^a O3c1 M186 1-bp DE ^a M P37 T->C D2 M50 T->C A2 M117 4-bp DE ^a O3c1 M186 C>T M4 G->A C3 M51 G->A A3b1 M119 A->C O1 M189 G->T M SRY ₀₆₆₄ G->A E M55 T->C D2 M121 5 bp DE ^a O3a M191 T->C SRY ₀₆₅₁₈ A->C SRY ₀₆₅₁₈ A->C N R1a A <	M43	A->G	B2a2a	M112	G->A	B2b	M181	T->C	В	P28	C->T	A2b
M45G->AP-RM1141-SCA2aM185A-SCP511-SC02M47G->AJ2aM115C->TB2b2M184G->AP33T->CC2aM48A->GC3cM116.2"A->C, triallelic"D2b,E3a2M185C->TP36G->AQM49T->CA2M1174-bp DE ^a O3e1M1861-bp DE ^a MP37T->CD2M50T->CO1bM118A->TA3b2bM186C->TP44G->AC3M51G->AA3b1M119A->CO1M189G->TMSRY 4064G->AEM52A->CHM120T->CQ1M190A->GA3bSRY 9138C->TK1M54G->AE2bM1215 bp DE ^a O3aM191T->GSRY 10814A->GB-RM55T->CD2M122T->CO3M192C->TSRY 10814A->GB-RM55T->CD2M124C->TP1M194T->CQ3bTat (M46)T->CN3M56A->TR1a1aM123G->AE3b3M1934-bp IN ^a 92R7G->AP.RM57+1bpD2M124C->TP1M194T->CQ3bTat (M46)T->CN3M57+2bD2M124C->TA3b2M197T->CMSY24->3"B2b4b, O1<	M44	G->C	Ela	M113	A->G	03d1	M182	C->1	B 2	P29	A->C	E
M47 G->A J2a M115 C->1 B2b2 M184 G->A P35 1>C C2a M48 A->G C3c M116.2<"A->C, triallelic" D2b,E3a2 M185 C->T P36 G->A Q M49 T->C A2 M117 4-bp DE ^a O3e1 M186 I-bp DE ^a M P37 T->C D2 M50 T->C O1b M118 A->T A3b2b M188 C>T P44 G->A C3 M51 G->A A3b1 M119 A->C O1 M189 G->T M SRY ₁₀₆₄ G->A E M54 G->A E2b M121 5 bp DE ^a O3a M191 T->G SRY ₁₀₈₄ A->G B-A R1a M55 T->C D2 M122 T->C O3 M192 C->T SRY ₁₀₈₄ A->G B-A R1a M56 A->T R1a1a M123 G->A E3b3 M193 4-bp IN ^a D2R7 G->A P.R M57 +1bp </td <td>M45</td> <td>G->A</td> <td>P-R</td> <td>M114</td> <td>I->C</td> <td>A2a</td> <td>M183</td> <td>A->C</td> <td></td> <td>P31</td> <td>1->C</td> <td>02</td>	M45	G->A	P-R	M114	I->C	A2a	M183	A->C		P31	1->C	02
M48A->GC3cM1162 (A->C, trainleic)D2b,E32M185C->TP56G->AQM49T->CA2M1174-bp DE"O3e1M1861-bp DE"MP37T->CD2M50T->CO1bM18A->TA3b2bM188C->TP44G->AC3M51G->AA3b1M119A->CO1M189G->TMSRY ₄₀₆₄ G->AEM52A->CHM120T->CQ1M190A->GA3bSRY _{10811a} C->TK1M54G->AE2bM1215 bp DE"O3aM191T->GSRY _{10811a} A->GB-RM55T->CD2M122T->CO3M192C->TSRY _{10811a} A->GB-RM55T->CD2M124C->TP1M194T->CQ3bTat (M46)T->CN3M58G->AE3a1M125T->CD2b1M195A->GAptG->AF1M59A->CA3aM1264-bp DE"R1b5M196C->GA2LINE1LINE-> LINE+03cM61C->TLM128-2bpN1M198C->TSRY-26c7C->TR1b2bb, O1M62T->CJ1M129G>AB2b3M1991-bp IN° (G)Q3cSRY+465C->TH2b4b, O1M61C->TLM128G->AB2b3M1991-bp IN° (G)	M47	G->A	J2a	MI15	C->1	B262	M184	G->A		P33	T->C	C2a
M491->CA2M1174-bp DE*Ose1M1861-bp DE*MP571->CD2M50T->CO1bM118A->TA3b2bM188C>TP44G->AC3M51G->AA3b1M119A->CO1M189G->TMSRY_{4064}G->AEM52A->CHM120T->CQ1M190A->GA3bSRY_{9138}C->TK1M54G->AE2bM1215 bp DE*O3aM191T->GSRY_{10831a}A->GB-RM55T->CD2M122T->CO3M192C->TSRY_{10831a}A->GB-RM55T->CD2M122T->CO3M1934-bp IN*92R7G->AR1aM56A->TR1a1aM123G->AE3b3M1934-bp IN*92R7G->AP.RM58G->AE3a1M125T->CD2b1M196A->GAptG->AF1M59A->CA3aM1264-bp DE*R1b5M196C-SGA2LINE1LINE-> LINE+O3cM60+1bpBM127C->TA3b2M197T->CMSY24->3"B2b4b, O1M61C->TLM128-2bpN1M198C->TSRY-2627C->TR1b8M62T->CJ1M129G->AB2b3M1991-bp IN*(G)Q3cSRY+465C->T	M48	A->G	C3c	M116.2	2 "A->C, triallelic	²⁷ D2b,E3a2	M185	C->T		P36	G->A	Q
	M49	1->C	A2	M11/	4-bp DE"	0301	M186	1-bp DE ^a	М	P37	I->C	D2
MS1G->AA A501M119A->CO1M189G->1MSR Y_{4064} G->AEM52A->CHM120T->CQ1M190A->GA3bSRY $_{9138}$ C->TK1M54G->AE2bM1215 bp DE ^a O3aM191T->GSRY $_{10831a}$ A->GB-RM55T>CD2M122T->CO3M192C->TSRY $_{10831b}$ G->AR1aM56A->TR la1aM123G->AE3b3M1934-bp IN ^a 92R7G->AP-RM57+1bpD2M124C->TP1M194T->CQ3bTat (M46)T->CN3M58G->AE3a1M125T->CD2b1M195A->GAptG->AF1M59A->CA3aM1264-bp DE ^a R1b5M196C->GA2LINE1LINE> LINE+O3cM60+1bpBM127C->TA3b2M197T->CMSY24->3"B2b4b, O1M61C->TLM128-2bpN1M198C->TSRY-6627C->TR1b8M62T->CJ1M129G->AB2b3M1991-bp IN ^a (G)Q3cSRY+465C->TM63G->AA3b2M1319-bp DE ^a C1M200G->A47zG->CM64M64A->GR ^a M1331-bp (T) DE ^a O3e1M202T->GME	M50	1->C	OID A 21-1	M118	A->1	A3b2b	M188	C->1	м	P44	G->A	C3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M51	G->A	A301	M119	A->C	01	M189	G->1	M	SKY ₄₀₆₄	G->A	E
M54G->AE2bM121S bp DE"OsaM191T->GSRY $_{10831a}$ A->GB-RM55T->CD2M122T->CO3M192C->TSRY $_{10831b}$ G->AR 1aM56A->TR 1a laM123G->AE3b3M1934-bp IN"92R7G->AP.RM57+1bpD2M124C->TP1M194T->CQ3bTat (M46)T->CN3M58G->AE3a1M125T->CD2b1M195A->GAptG->AF1M59A->CA3aM1264-bp DE"R1b5M196C->GA2LINE1LINE-> LINE+O3cM60+1bpBM127C->TA3b2M197T->CMSY24->3"B2b4b, O1M61C->TLM128-2bpN1M198C->TSRY-2627C->TR1b8M62T->CJ1M129G->AB2b3M1991-bp IN" (G)Q3cSRY+465C->TM63G->AA3b2M1319-bp DE"C1M200G->A47zG->CA2M64A->G RE"'D2, R1a1c''M132G->TE1M201G->TGMEH1C->GA2M65A->TR1b3M1331-bpO3e1M202T->GMEH2G->TQM66A->CE3a6M134-1bpO3eM203G->CD-E50f2(P) <td< td=""><td>M52</td><td>A->C</td><td>H</td><td>M120</td><td>1->C</td><td>QI</td><td>M190</td><td>A->G</td><td>A3b</td><td>SR Y ₉₁₃₈</td><td>C->1</td><td>KI</td></td<>	M52	A->C	H	M120	1->C	QI	M190	A->G	A3b	SR Y ₉₁₃₈	C->1	KI
MDS1-SCD2M1221-SCO5M192C->1SRY $_{10831b}$ G->AR1aM56A->TR1a1aM123G->AE3b3M1934-bp INa92R7G->AP-RM57+1bpD2M124C->TP1M194T->CQ3bTat (M46)T->CN3M58G->AE3a1M125T->CD2b1M195A->GAptG->AF1M59A->CA3aM1264-bp DEaR1b5M196C->GA2LINE1LINE> LINE+O3cM60+1bpBM127C->TA3b2M197T->CMSY24->3"B2b4b, O1M61C->TLM128-2bpN1M198C->TSRY-2627C->TR1b8M62T->CJ1M129G->AB2b3M1991-bp INa (G)Q3cSRY+465C->TM63G->AA3b2M1319-bp DEaC1M200G->A47zG->CM64A->G REa''D2, R1a1c''M132G->TE1M201G->TGMEH1C->GA2M65A->TR1b3M1331-bpO3e1M202T->GMEH2G->TQM66A->CE3a6M134-1bpO3eM203G->CD-E50f2(P)G->CB2bM67A->TJ2bM136C->TE3b3a1M205T->AM6912f2present->absent	M54	G->A	E2b	M121	5 bp DE"	O3a O2	M191	T->G		SRY _{10831a}	A->G	B-R
M36A->1R1a1aM123G->AE363M1934-bp IN* $92R7$ G->AP-RM57+1bpD2M124C->TP1M194T->CQ3bTat (M46)T->CN3M58G->AE3a1M125T->CD2b1M194T->CQ3bAptG->AF1M59A->CA3aM1264-bp DE ^a R1b5M196C->GA2LINE1LINE> LINE+O3cM60+1bpBM127C->TA3b2M197T->CMSY24->3"B2b4b, O1M61C->TLM128-2bpN1M198C->TSRY-2627C->TR1b8M62T->CJ1M129G->AB2b3M1991-bp IN ^a (G)Q3cSRY+465C->TM63G->AA3b2M1319-bp DE ^a C1M200G->A47zG->CM64A->G RE ^a 'D2, R1a1c''M132G->TE1M201G->TGMEH1C->GA2M65A->TR1b3M1331-bp (T) DE ^a O3e1M202T->GMEH2G->TQM66A->CE3a6M134-1bpO3eM203G->CD-E50f2(P)G->CB2bM67A->TJ2fM135+1bpA2M204T->GA2Lif2present->absentD2, JM68A->GJ2bM136C->TE3b3a1M205T->A	M55	1->C	D2	M122	1->C	03	M192	C->1		SK Y 10831b	G->A	KIA DD
M57+1bpD2M124C->1P1M1941->CQ55Tat (M46)1->CN3M58G->AE3a1M125T->CD2b1M195A->GAptG->AF1M59A->CA3aM1264-bp DE ^a R1b5M196C->GA2LINE1LINE1>LINE+O3cM60+1bpBM127C->TA3b2M197T->CMSY24->3"B2b4b, O1M61C->TLM128-2bpN1M198C->TSRY-2627C->TR1b8M62T->CJ1M129G->AB2b3M1991-bp IN ^a (G)Q3cSRY+465C->TM63G->AA3b2M1319-bp DE ^a C1M200G->A47zG->CM64A->G RE ^a 'D2, R1a1c''M132G->TE1M201G->TGMEH1C->GA2M65A->TR1b3M1331-bp (T) DE ^a O3e1M202T->GMEH2G->TQM66A->CE3a6M134-1bpO3eM203G->CD-E50f2(P)G->CB2bM67A->TJ2fM135+1bpA2M204T->GA2M68A->GJ2bM136C->TE3b3a1M205T->AM206T->GA2M69T->CHM137T->CJ2cM206T->GA2A2	M50	A->1	RIAIA	M125	G->A	E303	M195	4-bp IN"	0.21	92K/	G->A	P-K
M188G->AEsalM1251->CD261M195A->GAptG->AF1M59A->CA3aM1264-bp DE ^a R1b5M196C->GA2LINE1LINE>LINE+O3cM60+1bpBM127C->TA3b2M197T->CMSY24->3"B2b4b, O1M61C->TLM128-2bpN1M198C->TSRY-2627C->TR1b8M62T->CJ1M129G->AB2b3M1991-bp IN ^a (G)Q3cSRY+465C->TM63G->AA3b2M1319-bp DE ^a C1M200G->A47zG->CM64A->G RE ^a 'D2, R1a1c''M132G->TE1M201G->TGMEH1C->GA2M65A->TR1b3M1331-bp (T) DE ^a O3e1M202T->GMEH2G->TQM66A->CE3a6M134-1bpO3eM203G->CD-E50f2(P)G->CB2bM67A->TJ2fM135+1bpA2M204T->G12f2present->absentD2, JM68A->GJ2bM136C->TE3b3a1M205T->AM206T->GA2M69T->CHM137T->CJ2cM206T->GA2	M57	+1bp	D2	M124	C->1	PI DOL 1	M194	1->C	Q36	1 at (M46)	1->C	N3
M199A->CA3aM1264-bp DE ^a R1b5M196C->GA2LINE1LINE> LINE+O3cM60+1bpBM127C->TA3b2M197T->CMSY24->3"B2b4b, O1M61C->TLM128-2bpN1M198C->TSRY-2627C->TR1b8M62T->CJ1M129G->AB2b3M1991-bp IN ^a (G)Q3cSRY+465C->TM63G->AA3b2M1319-bp DE ^a C1M200G->A47zG->CM64A->G RE ^a 'D2, R1a1c''M132G->TE1M201G->TGMEH1C->GA2M65A->TR1b3M1331-bp (T) DE ^a O3e1M202T->GMEH2G->TQM66A->CE3a6M134-1bpO3eM203G->CD-E50f2(P)G->CB2bM67A->TJ2fM135+1bpA2M204T->G12f2present->absentD2, JM68A->GJ2bM136C->TE3b3a1M205T->AM206T->GA2M69T->CHM137T->CJ2cM206T->GA2	M58	G->A	E3al	M125	1->C	D2b1	M195	A->G	12	Apt	G->A	FI
M60+10pBM127C->1A302M1971->CMS Y24->5B2040, OIM61C->TLM128-2bpN1M198C->TSRY-2627C->TR1b8M62T->CJ1M129G->AB2b3M1991-bp IN^a (G)Q3cSRY+465C->TM63G->AA3b2M1319-bp DE^a C1M200G->A47zG->CM64A->G RE ^a 'D2, R1a1c''M132G->TE1M201G->TGMEH1C->GA2M65A->TR1b3M1331-bp (T) DE^a O3e1M202T->GMEH2G->TQM66A->CE3a6M134-1bpO3eM203G->CD-E50f2(P)G->CB2bM67A->TJ2fM135+1bpA2M204T->G12f2present->absentD2, JM68A->GJ2bM136C->TE3b3a1M205T->AM206T->GA2M69T->CHM137T->CJ2cM206T->GA2	M59	A->C	Asa	M126	4-bp DE"	K105	M196	C->G	A2	LINEI	LINE> LINE+	+ 0.5C
M61C->1LM128-2bpN1M198C->1SRT-262/C->1R1b8M62T->CJ1M129G->AB2b3M1991-bp IN^a (G)Q3cSRY+465C->TM63G->AA3b2M1319-bp DE^a C1M200G->A47zG->CM64A->G RE ^a 'D2, R1a1c''M132G->TE1M201G->TGMEH1C->GA2M65A->TR1b3M1331-bp (T) DE^a O3e1M202T->GMEH2G->TQM66A->CE3a6M134-1bpO3eM203G->CD-E50f2(P)G->CB2bM67A->TJ2fM135+1bpA2M204T->G12f2present->absentD2, JM68A->GJ2bM136C->TE3b3a1M205T->AM206T->GA2M69T->CHM137T->CJ2cM206T->GA2	M60	+1bp	В	M12/	C->1	A3b2	M197	I->C		MSY2	4->3	B2b4b, O1"
M621->CJ1M129G->AB205M1991-bpIC(G)Q5cSR Y+465C->1M63G->AA3b2M1319-bpDE ^a C1M200G->A47zG->CM64A->G RE ^a 'D2, R1a1c''M132G->TE1M201G->TGMEH1C->GA2M65A->TR1b3M1331-bp(T) DE ^a O3e1M202T->GMEH2G->TQM66A->CE3a6M134-1bpO3eM203G->CD-E50f2(P)G->CB2bM67A->TJ2fM135+1bpA2M204T->G12f2present->absentD2, JM68A->GJ2bM136C->TE3b3a1M205T->AM206T->GA2M69T->CHM137T->CJ2cM206T->GA2	MOI	C->1 T+C		M128	-20p	NI DOLO	M198	$C \rightarrow I$	02	SR 1-2627	C->1	K108
M65G->AA352M1319-bp DE ^a C1M200G->A472G->CM64A->G RE ^a 'D2, R1a1c'' M132G->TE1M201G->TGMEH1C->GA2M65A->TR1b3M1331-bp (T) DE ^a O3e1M202T->GMEH2G->TQM66A->CE3a6M134-1bpO3eM203G->CD-E50f2(P)G->CB2bM67A->TJ2fM135+1bpA2M204T->G12f2present->absentD2, JM68A->GJ2bM136C->TE3b3a1M205T->AM206T->GA2	M62	1->C	J1	M129	$G \rightarrow A$	B203	M199 1	I-bp IN ^a (G)	Qsc	SK 1+405	C->1	
MO4A->G KE*D2, KlaicM132G->1E1M201G->1GMEH1C->GA2M65A->TR1b3M1331-bp (T) DE ^a O3e1M202T->GMEH2G->TQM66A->CE3a6M134-1bpO3eM203G->CD-E50f2(P)G->CB2bM67A->TJ2fM135+1bpA2M204T->G12f2present->absentD2, JM68A->GJ2bM136C->TE3b3a1M205T->AM206T->GA2M69T->CHM137T->CJ2cM206T->GA2	IV105	$U \rightarrow A$	A302	M131	9-0p DE" G > T		M201	G > T	C	4/Z	G >C	12
MOSA->1R105M155I-op (1) DE"Ose1M202I->GMEH2G->TQM66A->CE3a6M134-1bpO3eM203G->CD-E $50f2(P)$ G->CB2bM67A->TJ2fM135+1bpA2M204T->G12f2present->absentD2, JM68A->GJ2bM136C->TE3b3a1M205T->AM69T->CHM137T->CJ2cM206T->GA2	1V104	$A > U KE^{a}$	D2, Klaic	M132	$U \rightarrow I$	E1 02+1	M201	U->1 T \ C	U	MEHI	C->G	A2
MOD A->C E3ab M134 -1bp Ode M205 G->C D-E $50f2(P)$ G->C B2b M67 A->T J2f M135 +1bp A2 M204 T->G 12f2 present->absent D2, J M68 A->G J2b M136 C->T E3b3a1 M205 T->A M69 T->C H M137 T->C J2c M206 T->G A2	MOS	A->1	K105	M133	1-op (1) DE"	0301	M202	1->G	D D	MEH2	G->1	Q DCI
M0/ A->1 J2T M155 +1bp A2 M204 T->G 12t2 present->absent D2, J M68 A-SG J2b M136 C->T E3b3a1 M205 T->A M69 T->C H M137 T->C J2c M206 T->G A2	M66	A->C	E3a6	M134	-1bp	O3e	M203	G->C	D-E	50f2(P)	G->C	B2b
M08 A->G J20 M156 C->1 E353a1 M205 I->A M69 T->C H M137 T->C J2c M206 T->G A2	M0/	A->1	JZI JZI	M135	+1bp	AZ	M204	1->G		1212	present->absen	и D2, J
NIDY 1-2C R NITS/ 1-2C J2C M2UO I-2G A2	NI08	A->0 T > C	ј20 Ц	M130	U->1 T>C	E3D3a1	M205	1->A T > C	4.2			
	10109	1-20	11	101137	1-20	JZC	11200	1->0	AΔ			

^a DE: Deletion; IN: Insertion; RE: Recurrent.

[32]. Until 1997 only about a dozen biallelic markers had been described on the Y-chromosome. These Y-SNPs included sY81 (DYS271) [84], DYS199 (M3) [92], 92R7 [61], and SRY -8299, -1532, -2627 [97]. The use of denaturing high performance liquid chromatography (DHPLC) by Peter Underhill's group at Stanford University for discovery of SNPs has added several hundred more Y-SNPs to the available marker set [93,94,98].

Table 6 lists characteristics for 246 Y-SNP markers [98]. The marker names are listed as "M" numbers were discovered and named by the Stanford group. Marker numbers listed in Table 6 are discontinuous because of selected removal of numbered microsatellite and homopolymer polymorphisms. In addition, markers discovered by other groups, such as Tat (M46), were given Stanford marker numbers and then later removed from the list. Some of these duplicates include YAP (M1), sY81 (M2), P3 (M29), SRY 4064 (M40), SRY 9138 (M177), and SRY 2627 (M167). In addition to the marker name, information on "ancestral" and "derived" allele calls for each Y-SNP are listed in Table 6 along with the haplogroup defined by a derived allele when variation is observed at a particular marker.

B. Unified Nomenclature for Y-Single Nucleotide Polymorphism Haplogroups

One of the biggest problems with Y-SNPs has been the different naming schemes for haplogroup designation developed by the various Y-chromosome research groups around the world. Before 2002, if a "G" (derived state) was observed in a sample when typing the M2 (sY81 or DYS271) marker, then the sample could be reported as belonging to haplogroup (Hg) 8 by Jobling's nomenclature [46], Hg III by Underhill's naming procedure [94], or Hg 5 by Hammer's description [33]. Examination of different population samples with different markers and descriptions of results with unique nomenclatures made understanding the relationships between markers and populations challenging if not impossible.

In February 2002, the Y-chromosome Consortium (YCC) published a paper in Genome Research that is in many ways the Rosetta Stone for Y-SNP markers [98]. In this paper, a haplogroup tree is described showing the relationships of over 200 Y-SNPs to each other as well as correlating seven different nomenclatures for defining these haplogroups. In the process of defining 153 haplogroups on this parsimonious tree, a new method of classifying Y-chromosome haplogroup nomenclatures is spelled out. The example given above with the M2 derived allele would now place it in YCC Hg "E3a".

The YCC haplogroup tree or "cladogram" was generated by comparison of Y-SNP markers in a common

 Table 7. Examples of recent work applying SNP typing technologies to Y-SNP markers

Method	Markers typed	Ref.
Melting curve	M170, M9	[99]
MALDI-TOF MS	118 Y SNPs in 20 multiplexes	[64]
Microarrays	24 Y SNPs in 2 multiplexes	[71]
Microchip CE	YAP, 12f2	[42]
SNaPshot	15 SNPs in 2 multiplexes	[41]
Real-time PCR	4 SNPs in singleplex or 2 duplexes: M9, sY81, SRY1532, SRY2627	[59]
Luminex hybri- dization beads	42 SNPs in 5 multiplexes	Vallone, Butler ^a

set of samples from diverse populations. A set of 74 male and 2 female cell lines from diverse world population sources was used by the YCC. Population sources for the YCC cell lines are described at the University of Arizona website: http://ycc.biosci.arizona.edu/nomenclature_ system/table1.html. Results from Y-STR markers using the NIST 20plex [12] and new Y-STR markers [72] have also been reported on these same 74 male cell lines. The creation of a common, unified nomenclature has been a tremendous aid to the Y-chromosome research community.

C. Typing Technologies

A number of different technologies and approaches have been used for examining Y-SNP markers (Table 7). Some methods, such as real-time PCR [59], work best by analyzing markers one at a time while others are capable of multiplex analysis. The most comprehensive approach to typing Y-SNPs has been the time-of-flight mass spectrometry multiplexes developed by Chris Tyler-Smith's group [64]. Twenty different multiplex assays were designed to type 118 Y-SNPs in a hierarchical format. The first multiplex examines the SNPs at the major branch points in the YCC tree. Additional multiplexes are then used as needed to differentiate Y-SNP haplogroups based on the derived alleles present until the tree is followed out to its furthest branches. These 118 markers are capable of distinguishing 116 different haplogroups [64]. However, not everyone has access to a mass spectrometer or the need to type this many markers.

D. SNaPshot Assay

One technique that has recently gained popularity is the primer extension approach using the SNaPshot[™] kit from Applied Biosystems. This method is facilitated by its use of multi-color fluorescence gel or capillary electrophoresis equipment readily available in most forensic DNA laboratories. Inagaki and coworkers [41] examined 15 Y-SNPs in two SNaPshot multiplexes. Markers used in these assays included M9, M105, M122, M125, M128, M130, SRY465, and 8 new Y-SNPs from a Japanese SNP database. They observed 13 different haplogroups in 159 Japanese males [41]. Kayser and coworkers [54] also used SNaPshot to examine M95, M104, M173, M210, and M217 as part of a study of New Guinea populations. At the November 2002 Third International Forensic Y-User Workshop held in Porto, Portugal, the ability to multiplex 35 Y-SNPs in a single SNaPshot assay was reported [79].

Our group at NIST has examined medium-size SNaPshot multiplexes in order to evaluate several dozen

Figure 9. Example samples with a NIST SNaPshot assay developed for simultaneous analysis of 6 Y-SNPs. A 6plex PCR multiplex is the template for the 6plex SnaPshot assay (Vallone and Butler, in preparation). Allele comparisons in boxes are distinguished by size and/or color.

Y-SNPs for relevance to U.S. populations. Figure 9 demonstrates three samples with different Y-SNP results using a 6plex SNaPshot assay for the markers M75, M112, M119, M170, M172, and M174. We have examined a total of 50 Y-SNPs in appoximately 200 U.S. Caucasian and African American population samples using the SNaPshot and Luminex SNP typing approaches (Vallone and Butler, in preparation).

E. Luminex Assay

Another technology that permits evaluation of Y-SNP markers in a highly multiplexed fashion is based on the Luminex platform with allele-specific hybridization [2]. **Figure 10** illustrates the process in the Luminex assay. PCR is used to amplify the SNP site (e.g., A or G) and to label the PCR product with a fluorescent dye. The labeled

Figure 10. Schematic of Luminex bead hybridization assay for SNP analysis.

Butler • Development in Y-STR and Y-SNP Analysis

PCR product is then hybridized to allele-specific probes attached to latex beads. Oligonucleotide probes for each possible SNP allele are attached to a different color bead. A hundred different bead colors are possible, enabling up to 50 biallelic markers to be examined simultaneously. The beads are then evaluated one at a time through flow cytometry using two different lasers. One laser detects fluorescence from the labeled PCR products and the other evaluates the color of bead passing by the detector. Signal from the PCR product is placed into various bins associated with bead color and hence SNP marker and allele call. The relative amounts of signal from the two possible alleles can be compared to determine the SNP call. Each sample can be processed through the Luminex 100 flow cytometer instrument in approximately 30 seconds. Thus, a 96-well plate can be run in less than an hour.

Marligen Biosciences, Inc. (Ijamsville, MD) has developed a Y-SNP testing kit capable of analyzing 42 Y-SNPs with 5 different multiplex PCR reactions that works on the Luminex platform (see http://www.marligen.com/ products/signetysnp.htm). These 42 Y-SNPs define 38 possible haplogroups covering most of the YCC tree (**Figure 11**). Multiplex 1 includes markers that examine the major branch points of the tree, whereas Multiplex 5

Figure 11. YCC haplogroups defined by 42 Y-SNPs in Marligen kit.

markers seek to further differentiate YCC haplogroup R. Note that there is some redundancy in the Marligen kit markers. For example, M42 and M94 (all but Hg A) provide the same information, as do P3 and P4 (Hg A2*). It is also worth noting that not all Y-SNP markers are equally useful in population analysis.

F. Optimal Y-SNP Markers

An analysis of 20 U.S. Caucasian and 20 African American samples with the 42 Marligen Y-SNPs illustrates that most of the markers do not vary in the small sample set shown here (Table 8). In fact, only 8 different haplogroups were observed among the 40 samples. However, separation of the population-of-origin (i.e., ethnic discrimination) for the samples is striking. Most of the African American samples are derived at M2 and are thus in the E3a haplogroup while a majority of the U.S. Caucasians are derived at M207 and fall into haplogroup R. A larger study of almost 200 individuals showed similar characteristics (Figure 12). While there is a degree of admixture between U.S. populations, Y-SNP markers may be able to play a role in inferring the population-oforigin for a crime-scene stain should that ability be desired in the future [47].

Y-SNP population studies to date have primarily focused on human migration patterns or evolutionary studies [5,7,33,50,51,54,62,63,92,94,95,100,101]. These studies have been conducted with relatively small sample sets from diverse populations. The studies necessary to truly evaluate the forensic relevance of Y-SNPs in larger, more homogeneous population data sets are just getting underway. It is likely that Y-SNPs will be used in a complementary role with Y-STRs rather than as a standalone approach for examining male genetic variation in a forensic context.

IV. REFERENCE MATERIALS AND STANDARDIZATION

Reference materials permit calibration of analytical methods as well as monitoring the quality of these methods over time. Need for standardization of information going into DNA databases has stressed the importance of quality reference materials. In addition, allele nomenclatures for typing systems must be consistent so that DNA databases can efficiently exchange information among laboratories. Interlaboratory studies are needed for understanding performance levels of participating labs. Individual laboratories must also perform validation studies to deduce the performance of a particular assay in their hands.

	und net	lacificites	ure on a	ie fight bie	ie of the	uole						
SWGDM sample	M207 A/G	M45 G/A	M89 C/T	DYS391 C/G	M2 A/G	M170 A/C	M172 T/G	M201 G/T	M153 T/A	SRY10831 A/G	Hg	Fregueny
AA1	А	G	С	G	G	А	Т	G	Т	G	E3a	40%
AA2	А	G	C	G	G	А	Т	G	Т	G		
AA3	A	Ğ	Č	Ğ	Ğ	A	Ť	Ğ	Ť	Ğ		
AA4	А	G	Ċ	G	G	А	Т	G	Т	G		
AA6	А	G	C	G	G	А	Т	G	Т	G		
AA7	А	G	С	G	G	А	Т	G	Т	G		
AA8	А	G	C	G	G	А	Т	G	Т	G		
AA10	А	G	С	G	G	А	Т	G	Т	G		
AA11	А	G	С	G	G	А	Т	G	Т	G		
AA12	А	G	С	G	G	А	Т	G	Т	G		
AA15	А	G	С	G	G	А	Т	G	Т	G		
AA16	А	G	С	G	G	А	Т	G	Т	G		
AA18	А	G	С	G	G	А	Т	G	Т	G		
AA19	А	G	С	G	G	А	Т	G	Т	G		
AA20	А	G	С	G	G	А	Т	G	Т	G		
AA5	А	G	С	G	G	А	Т	G	Т	G		
C9	А	G	Т	G	А	А	Т	G	Т	G	E3*	3%
C6	А	G	Т	С	А	А	G	G	Т	G	J2	3%
C7	А	G	Т	С	А	А	Т	Т	Т	G	G	3%
AA9	А	G	Т	С	А	С	Т	G	Т	G	Ι	10%
AA14	А	G	Т	С	А	С	Т	G	Т	G		
C3	А	G	Т	С	А	С	Т	G	Т	G		
C18	А	G	Т	С	А	С	Т	G	Т	G		
AA13	G	А	Т	С	А	А	Т	G	Т	G	R	38%
AA17	G	А	Т	С	Α	А	Т	G	Т	G		
C1	G	А	Т	С	А	А	Т	G	Т	G		
C2	G	А	Т	С	Α	А	Т	G	Т	G		
C4	G	А	Т	С	А	А	Т	G	Т	G		
C5	G	А	Т	С	А	А	Т	G	Т	G		
C8	G	А	Т	С	А	А	Т	G	Т	G		
C10	G	А	Т	С	А	А	Т	G	Т	G		
C11	G	А	Т	С	А	А	Т	G	Т	G		
C13	G	А	Т	С	А	А	Т	G	Т	G		
C14	G	А	Т	С	А	А	Т	G	Т	G		
C16	G	А	Т	С	А	А	Т	G	Т	G		
C17	G	А	Т	С	А	А	Т	G	Т	G		
C19	G	А	Т	С	Α	А	Т	G	Т	G		
C20	G	А	Т	С	Α	А	Т	G	Т	G		
C12	G	А	Т	С	А	А	Т	G	Т	Α	R1A	3%
C15	G	А	Т	С	А	А	Т	G	Α	G	R1B6	3%

Table 8. Typing results from 42 Marligen Y-SNPs with 20 African American (AA) and 20 U.S. Caucasian (C) males. Derived alleles are shown with italic. The other 32 Y-SNPs did not vary in the tested samples. Note the redundancy in M207 and M45 and the fact that ethnic discrimination is not 100% with these population samples. YCC haplogroup (Hg) designations (*see* Ref. [98]) and frequencies are on the right side of the table

A. Available Reference Materials

A variety of reference materials have been available over the years for commonly used Y-STR markers. In the late 1990s, Peter de Knijff's laboratory at Leiden University supplied many laboratories around the world with allelic ladders for DYS19, DYS388, DYS390, DYS391, DYS392, and DYS393 (http://www.medfac.leidenuniv.nl/fldo/ hptekst.html). Lutz Roewer provides a set of 5 quality control standards for laboratories submitting data to the Y-STR Haplotype Database (http://www.ystr.org) of minimal and extended haplotype loci. More recently, ReliaGene Technologies Inc. (http://www.reliagene.com/) has begun selling 8 quality control bloodstains with their Y-PlexTM Reference Kit for validation purposes on the 11 loci typed with the Y-PlexTM 6 and Y-PlexTM 5 kits.

A Standard Reference Material[®] (SRM) has been created in our lab at NIST that will aid in future comparisons of different primer sets for commonly used and new Y-STR markers. NIST SRM 2395, Human Y-chromosome DNA Standard, contains 5 male samples and 1 female sample and will become available in 2003 (http://

Figure 12. Y-SNP haplogroup frequencies in 95 African American and 94 Caucasian males defined by analysis of 42 Marligen Y-SNPs. Only 15 different groups were observed from 189 individuals.

Figure 13. Characterization of DYS385 alleles in SRM 2395 by sequence analysis and Y-Plex[™] 6 kit typing.

www.nist.gov/srm). The male samples have been sequenced at more than 20 Y-STR loci and typed at more than 40 Y-SNPs (Butler, in preparation). An example of the sequence information obtained with two DYS385 alleles is shown in **Figure 13**. Laboratories wishing to verify that their assays were run properly with any primer set can use these reference materials. The recent availability of commercial STR kits and their allelic ladders will also promote standardization in allele calls.

B. Allele Nomenclature Issues

One of the major challenges with comparing results from Y-STR markers beyond the well-characterized minimal haplotype loci involves the issue of allele nomenclature. For example, the same DYS439 alleles have been reported three different ways in the literature [3,25,26]. Ayub et al. [3] use only the core variable repeat unit in their allele designations, whereas Griganni and coworkers [26] use seven additional invariant repeat units found upstream of the core variable repeat block. Gonzalez-Neira et al. [25] added two more invariant repeats beyond those used by Griganni in their DYS439 allele nomenclature. Thus, without a common set of rules correlating results between different laboratories can be quite challenging.

The DNA Commission of the International Society of Forensic Genetics (ISFG) published recommendations in July 2001 on Y-STR markers [24]. The guidelines state that Y-STR locus nomenclature should be the DYS number if available. For example, laboratories reporting results for Y-GATA-A7.1 [96] should use its new name DYS460 [8]. This ISFG group also recommended that allelic ladders should span the distance of known allelic variants within each locus with rungs that are one repeat unit apart wherever possible. Ladders should be widely available and contain alleles that have been sequenced.

Regarding allele nomenclature, the ISFG guidelines state that the number of complete repeat units should be counted with partial repeats (variant alleles) being designated by the number of complete repeats separated by a dot followed by the number of bases in the incomplete repeat as is commonly done with autosomal STR markers.

Unfortunately, the designation of some locus nomenclatures take into account the total number of repetitive units (nonvariant plus variant) while others report only the variable repetitive stretches. This presents problems for some markers, such as DYS439. At the Porto meeting in November 2002, it was decided to refer to repeats whenever possible by only the repeats that are immediately adjacent to one another or within a single repeat unit of the core variable repeat. Thus, DYS439 alleles should be called solely by their core repeat unit as done by Ayub et al. [3]. In addition, sequence analysis with DYS439 in chimpanzees has revealed that flanking repeats do not vary, arguing for use of only the core repeat [28,30].

Another potentially problematic locus with future database compatibility is the Y-STR marker GATA-H4 [96]. PCR primers have been published [12] that are internal to some of the invariant repeats reported by Gonzales-Neira et al. [25] and Gusmao et al. [28]. Methods for converting genotypes back and forth when using different primer sets with GATA-H4 need to be carefully considered [28].

C. Validation and Interlaboratory Studies

Validation studies help provide laboratories with performance characteristics for a particular DNA test prior to implementation in forensic casework. Several validation studies have been published or presented on inhouse [49,67] and commercial Y-STR kits, such as Y-Plex[™] 6 [88]. In addition, interlaboratory studies have been performed to verify that Y-STR systems can be reliably typed among multiple forensic DNA laboratories [14,65,82].

CONCLUSIONS

The field of Y-chromosome analysis and its application to forensic science has undergone rapid improvement in recent years. Male-specific amplification and its use in the analysis of sexual assault DNA evidence as well as missing persons and paternity investigations will likely play an important role in the future of forensic DNA typing. Commercially available kits now enable the forensic practitioner to easily perform Y-STR typing. Validation and interlaboratory studies have demonstrated that Y-STR typing is reliable. With more than 200 Y-STRs and 250 Y-SNPs now available, much remains to be done to understand the value of these new markers relative to the ones widely used today. Table 9 includes some Internet resources where more information on Y-chromosome research, population data and applications of the techniques described here may be found.

ACKNOWLEDGMENTS

Funding for this work was provided by the National Institute of Justice through an interagency agreement

 Table 9. Internet resources for additional Y-chromosome information

STRBase: NIST site on STR markers http://www.cstl.nist.gov/biotech/strbase/y_strs.htm

- References on Y-STRs and Y-SNPs listed (>200)
- Y STR nomenclature issues described
- Known alleles including microvariants listed for Y-STR markers
- Published primer sequences available
- Chromosomal locations for Y-STR markers
- Downloadable PowerPoint presentations on Y-STRs and Y-SNPs
- SRM 2395 information
- Information on available multiplex assays from NIST or commercial sources

Nomenclature on early Y-STRs: Peter de Knijff's site http://www.medfac.leidenuniv.nl/fldo/

Y Chromosome Consortium http://ycc.biosci.arizona.edu/

- YCC cell line sources
- Genome Research paper (see [98]) describing unified Y-SNP haplogroup tree

Y-STR Population Databases http://www.ystr.org/europe http://www.ystr.org/usa http://www.ystr.org/asia http://www.reliagene.com

Genetic Genealogy Companies http://www.familytreedna.com/ http://www.oxfordancestors.com/ http://www.relativegenetics.com/ http://www.genetree.com/ between NIJ and the NIST Office of Law Enforcement Standards. Richard Schoske kindly provided the data for the Y-STR multiplex figures, Peter Vallone developed the Y-SNP assays involving SNaPshot and generated the Y-SNP data using Luminex technology, Margaret Kline and Jan Redman helped prepare many of the population samples used in our studies, and David Duewer provided valuable review of manuscript drafts. Ben Krenke from Promega Corporation kindly supplied the data used for the PowerPlex[®] Y allelic ladders figure. Alan Redd, Michael Hammer, David Carlson, Mecki Prinz, Debang Liu, Del Price, and Clem Smetana have provided helpful insights or valuable collaborations over the course of our Ychromosome work at NIST.

REFERENCES

- 1. Alvarez S, Soledad MM, Lopez AM, de las Heras J, de Lago E, Lopez MT, Rubio JM, Arroyo-Pardo E: STR data for nine Y-chromosomal loci in Guinea Equatorial (central Africa); *Forensic Sci Int* 127:142; 2002.
- Armstrong B, Stewart M, Mazumder A: Suspension arrays for high throughput, multiplexed single nucleotide polymorphism genotyping; *Cytometry* 40:102; 2000.
- 3. Ayub Q, Mohyuddin A, Qamar R, Mazhar K, Zerjal T, Mehdi SQ, Tyler-Smith C: Identification and characterisation of novel human Y-chromosomal microsatellites from sequence database information; *Nucleic Acids Res* 28(2):e8; 2000.
- 4. Beleza S, Alves C, Gonzales-Neira A, Lareu M, Amorim A, Carracedo A, Gusmao L: Extending STR markers in Y-chromosome haplotypes; *Int J Legal Med* 117:27; 2003.
- Bergen AW, Wang CY, Tsai J, Jefferson K, Dey C, Smith KD, Park SC, Tsai SJ, Goldman D: An Asian-Native American paternal lineage identified by RPS4Y resequencing and by microsatellite haplotyping; *Ann Hum Genet* 63:63; 1999.
- Betz A, Bassler G, Dietl G, Steil X, Weyermann G, Pflug W: DYS STR analysis with epithelial cells in a rape case; *Forensic Sci Int* 118:126; 2001.
- Bosch E, Calafell F, Comas D, Oefner PJ, Underhill PA, Bertranpetit J: High-resolution analysis of human Ychromosome variation shows a sharp discontinuity and limited gene flow between northwestern Africa and the Iberian Peninsula; *Am J Hum Genet* 68:1019; 2001.
- Bosch E, Lee AC, Calafell F, Arroyo E, Henneman P, de Knijff P, Jobling MA: High resolution Y-chromosome typing: 19 STRs amplified in three multiplex reactions; *Forensic Sci Int* 125:42; 2002.
- 9. Butler JM: Forensic DNA Typing: Biology and Technology behind STR Markers. London, Academic Press, 2001.
- 10. Butler JM, Ruitberg CM, Vallone PM: Capillary electrophoresis as a tool for optimization of multiplex PCR reactions; *Fresenius J Anal Chem* 369:200; 2001.
- 11. Butler JM, Devaney JM, Marino MA, Vallone PM: Quality control of PCR primers used in multiplex STR amplification reactions; *Forensic Sci Int* 119:87; 2001.
- 12. Butler JM, Schoske R, Vallone PM, Kline MC, Redd AJ, Hammer MF: A novel multiplex for simultaneous

amplification of 20 Y-chromosome STR markers; *Forensic Sci Int* 129:10; 2002.

- Cali F, Forster P, Kersting C, Mirisola MG, D'Anna R, De Leo G, Romano V: DXYS156: a multi-purpose short tandem repeat locus for determination of sex, paternal and maternal geographic origins and DNA fingerprinting; *Int J Legal Med* 116:133; 2002.
- 14. Carracedo A, Beckmann A, Bengs A, Brinkmann B, Caglia A, Capelli C, Gill P, Gusmao L, Hagelberg C, Hohoff C, Hoste B, Kihlgren A, Kloosterman A, Myhre DB, Morling N, O'Donnell G, Parson W, Phillips C, Pouwels M, Scheithauer R, Schmitter H, Schneider PM, Schumm J, Skitsa I, Stradmann-Bellinghausen B, Stuart M, Syndercombe CD, Vide C: Results of a collaborative study of the EDNAP group regarding the reproducibility and robustness of the Y-chromosome STRs DYS19, DYS389 I and II, DYS390 and DYS393 in a PCR pentaplex format; *Forensic Sci Int* 119:28; 2001.
- Carvalho-Silva DR, Pena SD: Molecular characterization and population study of an X chromosome homolog of the Y-linked microsatellite DYS391; *Gene* 247:233; 2000.
- Corach D, Filgueira RL, Marino M, Penacino G, Sala A: Routine Y-STR typing in forensic casework; *Forensic Sci Int* 118:131; 2001.
- 17. Dau P, Liu D: DNA bracketing locus compatible standards for electrophoresis; U.S. Patent 6,013,444.
- Dekairelle AF, Hoste B: Application of a Y-STR-pentaplex PCR (DYS19, DYS389I and II, DYS390 and DYS393) to sexual assault cases; *Forensic Sci Int* 118:122; 2001.
- 19. de Knijff P, Kayser M, Caglia A, Corach D, Fretwell N, Gehrig C, Graziosi G, Heidorn F, Herrmann S, Herzog B, Hidding M, Honda K, Jobling M, Krawczak M, Leim K, Meuser S, Meyer E, Oesterreich W, Pandya A, Parson W, Penacino G, Perez-Lezaun A, Piccinini A, Prinz M, Schmitt C, Schneider PM, Szibor R, Teifel-Greding J, Weichhold GM, Roewer L: Chromosome Y microsatellites: population genetic and evolutionary aspects; *Int J Legal Med* 110:134; 1997.
- 20. de Knijff P: Messages through bottlenecks: On the combined use of slow and fast evolving polymorphic markers on the human Y-chromosome; *Am J Hum Genet* 67:1055; 2000.
- Dettlaff-Kakol A, Pawlowski R: First Polish DNA "manhunt" - an application of Y-chromosome STRs; *Int J Legal Med* 116:289; 2002.
- 22. Dupuy BM, Gedde-Dahl T, Olaisen B: DXYS267: DYS393 and its X chromosome counterpart; *Forensic Sci Int* 112:111; 2000.
- 23. Foster EA, Jobling MA, Taylor PG, Donnelly P, de Knijff P, Mieremet R, Zerjal T, Tyler-Smith C: Jefferson fathered slave's last child; *Nature* 396:27; 1998.
- 24. Gill P, Brenner C, Brinkmann B, Budowle B, Carracedo A, Jobling MA, de Knijff P, Kayser M, Krawczak M, Mayr WR, Morling N, Olaisen B, Pascali V, Prinz M, Roewer L, Schneider PM, Sajantila A, Tyler-Smith C: DNA Commission of the International Society of Forensic Genetics: recommendations on forensic analysis using Ychromosome STRs; *Forensic Sci Int* 124:5; 2001.
- Gonzalez-Neira A, Elmoznino M, Lareu MV, Sanchez-Diz P, Gusmao L, Prinz M, Carracedo A: Sequence structure of 12 novel Y-chromosome microsatellites and PCR amplification strategies; *Forensic Sci Int* 122:19; 2001.
- 26. Grignani P, Peloso G, Fattorini P, Previdere C: Highly

informative Y-chromosomal haplotypes by the addition of three new STRs DYS437, DYS438, and DYS439; *Int J Legal Med* 114:125; 2000.

- Gusmao L, Gonzalez-Neira A, Sanchez-Diz P, Lareu MV, Amorim A, Carracedo A: Alternative primers for DYS391 typing: advantages of their application to forensic genetics; *Forensic Sci Int* 112:49; 2000.
- Gusmao L, Gonzalez-Neira A, Alves C, Lareu M, Costa S, Amorim A, Carracedo A: Chimpanzee homologous of human Y-specific STRs. A comparative study and a proposal for nomenclature; *Forensic Sci Int* 126:129; 2002.
- Gusmao L, Alves C, Beleza S, Amorim A: Forensic evaluation and population data on the new Y-STRs DYS434, DYS437, DYS438, DYS439 and GATA A10; *Int J Legal Med* 116:139; 2002.
- Gusmao L, Gonzalez-Neira A, Alves C, Sanchez-Diz P, Dauber EM, Amorim A, Carracedo A: Genetic diversity of Y-specific STRs in chimpanzees (Pan troglodytes); *Am J Primatol* 57:21; 2002.
- Gusmao L, Alves C, Amorim A: Molecular characteristics of four human Y-specific microsatellites (DYS434, DYD437, DYS438, DYS439) for population and forensic studies; *Ann Hum Genet* 65:285; 2001.
- Hammer MF: A recent insertion of an Alu element on the Y-chromosome is a useful marker for human population studies; *Mol Biol Evol* 11:749; 1994.
- Hammer MF, Karafet TM, Redd AJ, Jarjanazi H, Santachiara-Benerecetti S, Soodyall H, Zegura SL: Hierarchical patterns of global human Y-chromosome diversity; *Mol Biol Evol* 18:1189; 2001.
- Hedman M, Hook K, Sajantilla A: Y-chromosomal microsatellites in the Finns; Poster P81 at 19th Congress of the International Society of Forensic Genetics; Aug 2001; Munster, Germany.
- 35. Helgason A, Sigureth aS, Nicholson J, Sykes B, Hill EW, Bradley DG, Bosnes V, Gulcher JR, Ward R, Stefansson K: Estimating Scandinavian and Gaelic ancestry in the male settlers of Iceland; *Am J Hum Genet* 67:697; 2000.
- Honda K, Roewer L, de Knijff P: Male DNA typing from 25-year-old vaginal swabs using Y-chromosomal STR polymorphisms in a retrial request case; *J Forensic Sci* 44:868; 1999.
- Honda K, Tun Z, Matoba R: DNA testing of Klinefelter's syndrome in a criminal case using XY-chromosomal STR multiplex-PCR; *J Forensic Sci* 46:1235; 2001.
- Hou YP, Zhang J, Li YB, Wu J, Zhang SZ, Prinz M: Allele sequences of six new Y-STR loci and haplotypes in the Chinese Han population; *Forensic Sci Int* 118:147; 2001.
- 39. Iida R, Tsubota E, Sawazaki K, Masuyama M, Matsuki T, Yasuda T, Kishi K: Characterization and haplotype analysis of the polymorphic Y-STRs DYS443, DYS444 and DYS445 in a Japanese population; *Int J Legal Med* 116:191; 2002.
- 40. Iida R, Tsubota E, Matsuki T: Identification and characterization of two novel human polymorphic STRs on the Y-chromosome; *Int J Legal Med* 115:54; 2001.
- 41. Inagaki S, Yamamoto Y, Doi Y, Takata T, Ishikawa T, Yoshitome K, Miyaishi S, Ishizu H: Typing of Ychromosome single nucleotide polymorphisms in a Japanese population by a multiplexed single nucleotide primer extension reaction; *Legal Medicine* 4:202; 2002.
- 42. Jabasini M, Zhang L, Dang F, Xu F, Almofli MR, Ewis AA, Lee J, Nakahori Y, Baba Y: Analysis of DNA

polymorphisms on the human Y-chromosome by microchip electrophoresis; *Electrophoresis* 23:1537; 2002.

- 43. Jobling MA, Tyler-Smith C: Fathers and sons: the Ychromosome and human evolution; *Trends Genet* 11:449; 1995.
- 44. Jobling MA, Samara V, Pandya A, Fretwell N, Bernasconi B, Mitchell RJ, Gerelsaikhan T, Dashnyam B, Sajantila A, Salo PJ, Nakahori Y, Disteche CM, Thangaraj K, Singh L, Crawford MH, Tyler-Smith C: Recurrent duplication and deletion polymorphisms on the long arm of the Ychromosome in normal males; *Hum Mol Genet* 5:1767; 1996.
- 45. Jobling MA, Pandya A, Tyler-Smith C: The Y-chromosome in forensic analysis and paternity testing; *Int J Legal Med* 110:118; 1997.
- 46. Jobling MA, Tyler-Smith C: New uses for new haplotypes the human Y-chromosome, disease and selection; *Trends Genet* 16:356; 2000.
- 47. Jobling MA: Y-chromosomal SNP haplotype diversity in forensic analysis; *Forensic Sci Int* 118:158; 2001.
- Jobling MA: In the name of the father Surnames and genetics; *Trends Genet* 17:353; 2001.
- 49. Johnson CL, Eisenberg A, Warren JE, Planz J, Warren JH, Staub RW: Validation of a Y-chromosome STR 10-plex; Poster presented at 13th International Symposium on Human Identification, Phoenix, Arizona, October 2002. <u>http:// www.promega.com/geneticidproc/ussymp13proc/ abstracts/35_staub.pdf</u>
- Jorde LB, Watkins WS, Bamshad MJ, Dixon ME, Ricker CE, Seielstad MT, Batzer MA: The Distribution of Human Genetic Diversity: A Comparison of Mitochondrial, Autosomal, and Y-Chromosome Data; *Am J Hum Genet* 66:979; 2000.
- 51. Karafet TM, Zegura SL, Posukh O, Osipova L, Bergen A, Long J, Goldman D, Klitz W, Harihara S, de Knijff P, Wiebe V, Griffiths RC, Templeton AR, Hammer MF: Ancestral Asian source(s) of new world Y-chromosome founder haplotypes; *Am J Hum Genet* 64:817; 1999.
- 52. Kayser M, Caglia A, Corach D, Fretwell N, Gehrig C, Graziosi G, Heidorn F, Herrmann S, Herzog B, Hidding M, Honda K, Jobling M, Krawczak M, Leim K, Meuser S, Meyer E, Oesterreich W, Pandya A, Parson W, Penacino G, Perez-Lezaun A, Piccinini A, Prinz M, Schmitt C, Schneider PM, Szibor R, Teifel-Greding J, Weichhold GM, de Knijff P, Roewer L: Evaluation of Y-chromosomal STRs: a multicenter study; *Int J Legal Med* 110:125; 1997.
- 53. Kayser M, Roewer L, Hedman M, Henke L, Henke J, Brauer S, Kruger C, Krawczak M, Nagy M, Dobosz T, Szibor R, de Knijff P, Stoneking M, Sajantila A: Characteristics and Frequency of Germline Mutations at Microsatellite Loci from the Human Y-chromosome, as Revealed by Direct Observation in Father/Son Pairs; *Am J Hum Genet* 66:1580; 2000.
- 54. Kayser M, Brauer S, Weiss G, Schiefenhovel W, Underhill P, Shen P, Oefner P, Tommaseo-Ponzetta M, Stoneking M: Reduced Y-chromosome, but not mitochondrial DNA, diversity in human populations from west New Guinea; Am J Hum Genet 72:281; 2003.
- 55. Kayser M, Sajantila A: Mutations at Y-STR loci: implications for paternity testing and forensic analysis; *Forensic Sci Int* 118:116; 2001.
- 56. Kayser M, Brauer S, Willuweit S, Schadlich H, Batzer MA,

Zawacki J, Prinz M, Roewer L, Stoneking M: Online Ychromosomal short tandem repeat haplotype reference database (YHRD) for U.S. populations; *J Forensic Sci* 47:513; 2002.

- 57. Kent WJ: BLAT—the BLAST-like alignment tool; *Genome Res* 12(4):656; 2002.
- Krausz C, Quintana-Murci L, Rajpert-De Meyts E, Jorgensen N, Jobling MA, Rosser ZH, Skakkebaek NE, McElreavey K: Identification of a Y-chromosome haplogroup associated with reduced sperm counts; *Hum Mol Genet* 10:1873; 2001.
- Lareu M, Puente J, Sobrino B, Quintans B, Brion M, Carracedo A: The use of the LightCycler for the detection of Y-chromosome SNPs; *Forensic Sci Int* 118:163; 2001.
- 60. Markoulatos P, Siafakas N, Moncany M: Multiplex polymerase chain reaction: a practical approach; *J Clin Lab Anal* 16:47; 2002.
- Mathias N, Bayes M, Tyler-Smith C: Highly informative compound haplotypes for the human Y-chromosome; *Hum Mol Genet* 3:115; 1994.
- 62. Mitchell RJ, Hammer MF: Human evolution and the Ychromosome; *Curr Opin Genet Dev* 6:737; 1996.
- 63. Nebel A, Filon D, Weiss DA, Weale M, Faerman M, Oppenheim A, Thomas MG: High-resolution Ychromosome haplotypes of Israeli and Palestinian Arabs reveal geographic substructure and substantial overlap with haplotypes of Jews; *Human Genetics* 107:630; 2000.
- 64. Paracchini S, Arredi B, Chalk R, Tyler-Smith C: Hierarchical high-throughput SNP genotyping of the human Y-chromosome using MALDI-TOF mass spectrometry; *Nucleic Acids Res* 30:e27; 2002.
- 65. Presciuttini S, Caglia A, Alu M, Asmundo A, Buscemi L, Caenazzo L, Carnevali E, Carra E, De Battisti Z, De Stefano F, Domenici R, Piccinini A, Resta N, Ricci U, Pascali VL: Y-chromosome haplotypes in Italy: the GEFI collaborative database; *Forensic Sci Int* 122:184; 2001.
- Prinz M, Boll K, Baum H, Shaler B: Multiplexing of Ychromosome specific STRs and performance for mixed samples; *Forensic Sci Int* 85:209; 1997.
- Prinz M, Ishii A, Coleman A, Baum HJ, Shaler RC: Validation and casework application of a Y-chromosome specific STR multiplex; *Forensic Sci Int* 120:177; 2001.
- Prinz M, Ishii A, Sansone M, Baum H, Shaler R: Y-Chromosome specific STR testing and the US legal system; Sensabaugh GF, Lincoln PJ, Olaisen B (Eds) *Progress in Forensic Genetics* 8:591; 2000.
- Qamar R, Ayub Q, Mohyuddin A, Helgason A, Mazhar K, Mansoor A, Zerjal T, Tyler-Smith C, Mehdi SQ: Y-Chromosomal DNA variation in Pakistan; *Am J Hum Genet* 70:1107; 2002.
- 70. Quintans B, Beleza S, Brion M, Sanchez-Diz P, Lareu M, Carracedo A: Population data of Galicia (NW Spain) on the new Y-STRs DYS437, DYS438, DYS439, GATA A10, GATA A7.1, GATA A7.2, GATA C4 and GATA H4; *Forensic Sci Int* 131:220; 2003.
- Raitio M, Lindroos K, Laukkanen M, Pastinen T, Sistonen P, Sajantila A, Syvanen AC: Y-chromosomal SNPs in Finno-Ugric-speaking populations analyzed by minisequencing on microarrays; *Genome Res* 11:471;2001.
- Redd AJ, Agellon AB, Kearney VA, Contreras VA, Karafet T, Park H, de Knijff P, Butler JM, Hammer MF: Forensic value of 14 novel STRs on the human Y-chromosome;

Forensic Sci Int 130:97; 2002.

- 73. Roewer L, Epplen JT: Rapid and sensitive typing of forensic stains by PCR amplification of polymorphic simple repeat sequences in case work; *Forensic Sci Int* 53:163; 1992.
- 74. Roewer L, Kayser M, Dieltjes P, Nagy M, Bakker E, Krawczak M, de Knijff P: Analysis of molecular variance (AMOVA) of Y-chromosome-specific microsatellites in two closely related human populations; *Hum Mol Genet* 5:1029; 1996.
- 75. Roewer L, Krawczak M, Willuweit S, Nagy M, Alves C, Amorim A, Anslinger K, Augustin C, Betz A, Bosch E, Caglia A, Carracedo A, Corach D, Dekairelle A, Dobosz T, Dupuy BM, Furedi S, Gehrig C, Gusmao L, Henke J, Henke L, Hidding M, Hohoff C, Hoste B, Jobling MA, Kargel HJ, de Knijff P, Lessig R, Liebeherr E, Lorente M, Martinez-Jarreta B, Nievas P, Nowak M, Parson W, Pascali VL, Penacino G, Ploski R, Rolf B, Sala A, Schmidt U, Schmitt C, Schneider PM, Szibor R, Teifel-Greding J, Kayser M: Online reference database of European Y-chromosomal short tandem repeat (STR) haplotypes; *Forensic Sci Int* 118:106; 2001.
- 76. Rolf B, Keil W, Brinkmann B, Roewer L, Fimmers R: Paternity testing using Y-STR haplotypes: assigning a probability for paternity in cases of mutations; *Int J Legal Med* 115:12; 2001.
- 77. Ruitberg CM, Butler JM: New primer sets for Ychromosome and CODIS STR loci; *11th International Symposium on Human Identification*; Biloxi, MS; 2000.
- Ruiz LA, Nayar K, Goldstein DB, Hebert JM, Seielstad MT, Underhill PA, Lin AA, Feldman MW, Cavalli Sforza LL: Geographic clustering of human Y-chromosome haplotypes; *Ann Hum Genet* 60:401; 1996.
- 79. Sanchez JJ, Hallenberg C, Borsting C, Buchard A, Hernadez A, Morling N: A Y-chromosome SNP multiplex for forensic genotyping; Presentation at 3rd International Forensic Y-User Workshop, Porto, Portugal, November 7, 2002.
- Santos FR, Epplen JT, Pena SDJ: Testing deficiency paternity cases with a Y-linked tetranucleotide repeat polymorphism; Pena SDJ, Chakraborty R, Epplen JT, Jeffreys AJ (Eds) DNA Fingerprinting: State of the Science, pp 261-265; 1993.
- Schneider PM, Meuser S, Waiyawuth W, Seo Y, Rittner C: Tandem repeat structure of the duplicated Y-chromosomal STR locus DYS385 and frequency studies in the German and three Asian populations; *Forensic Sci Int* 97:61; 1998.
- 82. Schneider PM, d'Aloja E, Dupuy BM, Eriksen B, Jangblad A, Kloosterman AD, Kratzer A, Lareu MV, Pfitzinger H, Rand S, Scheithauer R, Schmitter H, Skitsa I, Syndercombe-Court D, Vide MC: Results of collaborative study regarding the standardization of the Y- linked STR system DYS385 by the European DNA Profiling (EDNAP) group; *Forensic Sci Int* 102:159; 1999.
- Schoske R, Vallone PM, Ruitberg CM, Butler JM: Multiplex PCR design strategy used for the simultaneous amplification of 10 Y-chromosome short tandem repeat (STR) loci; *Anal Bioanal Chem* 375:333; 2003.
- 84. Seielstad MT, Hebert JM, Lin AA, Underhill PA, Ibrahim M, Vollrath D, Cavalli-Sforza LL: Construction of human Y-chromosomal haplotypes using a new polymorphic A to G transition; *Hum Mol Genet* 3:2159; 1994.
- 85. Shewale JG, Sikka SC, Schneida E, Sinha SK: DNA profiling of azoospermic semen samples from vasectomized

males by using Y-PLEX 6 amplification kit; *J Forensic Sci* 48:127; 2003.

- Shin DJ, Jin HJ, Kwak KD, Choi JW, Han MS, Kang PW, Choi SK, Kim W: Y-chromosome multiplexes and their potential for the DNA profiling of Koreans; *Int J Legal Med* 115:109; 2001.
- 87. Sibille I, Duverneuil C, Lorin dlG, Guerrouache K, Teissiere F, Durigon M, de Mazancourt P: Y-STR DNA amplification as biological evidence in sexually assaulted female victims with no cytological detection of spermatozoa; *Forensic Sci Int* 125:212; 2002.
- Sinha SK, Budowle B, Arcot SS, Richey SL, Chakrabor R, Jones MD, Wojtkiewicz PW, Schoenbauer DA, Gross AM, Sinha SK, Shewale JG: Development and validation of a multiplexed Y-chromosome STR genotyping system, Y-PLEX 6, for forensic casework; *J Forensic Sci* 48:93; 2003.
- Sykes B, Irven C: Surnames and the Y-chromosome; Am J Hum Genet 66:1417; 2000.
- 90. Tilford CA, Kuroda-Kawaguchi T, Skaletsky H, Rozen S, Brown LG, Rosenberg M, McPherson JD, Wylie K, Sekhon M, Kucaba TA, Waterston RH, Page DC: A physical map of the human Y-chromosome; *Nature* 409:943; 2001.
- 91. Uchihi R, Yamamoto T, Usuda K, Yoshimoto T, Tanaka M, Tokunaga S, Kurihara R, Tokunaga K, Katsumata Y: Haplotype analysis with 14 Y-STR loci using 2 multiplex amplification and typing systems in 2 regional populations in Japan; *Int J Legal Med* 117:34; 2003.
- Underhill PA, Li J, Zemans R, Oefner PJ, Cavalli-Sforza LL: A pre-Columbian Y-chromosome-specific transition and its implications for human evolutionary history; *Proc Natl Acad Sci USA* 93:196; 1996.
- 93. Underhill PA, Jin L, Lin AA, Mehdi Q, Jenkins T, Vollrath D, Davis RW, Cavalli-Sforza LL, Oefner PJ: Detection of numerous Y-chromosome biallelic polymorphisms dy denaturing high-performance liquid chromatography; *Genome Res* 7:996; 1997.
- 94. Underhill PA, Shen P, Lin AA, Jin L, Passarino G, Yang WH, Kauffman E, Bonne-Tamir B, Bertranpetit J, Francalacci P, Ibrahim M, Jenkins T, Kidd JR, Mehdi SQ, Seielstad MT, Wells RS, Piazza A, Davis RW, Feldman MW, Cavalli-Sforza LL, Oefner PJ: Y-chromosome sequence variation and the history of human populations; *Nat Genet* 26:358; 2000.
- 95. Wells RS, Yuldasheva N, Ruzibakiev R, Underhill PA, Evseeva I, Blue-Smith J, Jin L, Su B, Pitchappan R, Shanmugalakshmi S, Balakrishnan K, Read M, Pearson NM, Zerjal T, Webster MT, Zholoshvili I, Jamarjashvili E, Gambarov S, Nikbin B, Dostiev A, Aknazarov O, Zalloua P, Tsoy I, Kitaev M, Mirrakhimov M, Chariev A, Bodmer WF: The Eurasian heartland: a continental perspective on Y-chromosome diversity; *Proc Natl Acad Sci U S A* 98:10244; 2001.
- White PS, Tatum OL, Deaven LL, Longmire JL: New, male-specific microsatellite markers from the human Ychromosome; *Genomics* 57:433; 1999.
- Whitfield LS, Sulston JE, Goodfellow PN: Sequence variation of the human Y-chromosome; *Nature* 378:379; 1995.
- Y-chromosome Consortium: A nomenclature system for the tree of human Y-chromosomal binary haplogroups; *Genome Res* 12:339; 2002.
- 99. Ye J, Parra EJ, Sosnoski DM, Hiester K, Underhill PA,

Shriver MD: Melting curve SNP (McSNP) genotyping — A useful approach for diallelic genotyping in forensic science; *J Forensic Sci* 47:593; 2002.

- 100. Zerjal T, Wells RS, Yuldasheva N, Ruzibakiev R, Tyler-Smith C: A genetic landscape reshaped by recent events: Y-chromosomal insights into Central Asia; Am J Hum Genet 71:466; 2002.
- 101. Zerjal T, Beckman L, Beckman G, Mikelsaar AV, Krumina A, Kucinskas V, Hurles ME, Tyler-Smith C: Geographical, linguistic, and cultural influences on genetic diversity: Ychromosomal distribution in Northern European populations; *Mol Biol Evol* 18:1077; 2001.
- Zhang J, Hou Y, Tang J, Li Y, Wu J: Haplotype frequencies for two new Y-STR loci in Chinese population; *J Forensic Sci* 47:232; 2002.

John M. Butler received his Ph.D. in chemistry from the University of Virginia (Charlottesville, VA) in 1995. Dr. Butler is currently a research chemist at the U.S. National Institute of Standards and Technology.

Dr. Butler's dissertation work was performed at the FBI Laboratory's Forensic Science Research and Training Center (Quantico, VA). He worked there with Bruce McCord and Bruce Budowle on developing capillary electrophoresis methods for DNA typing involving short tandem repeat (STR) DNA markers and mitochondrial DNA. Dr. Butler then went to the National Institute of Standards and Technology (NIST) where he did postdoctoral research with Dennis Reeder. At NIST, he developed STRBase, which is an Internet-accessible database of information on STR markers used in human identity testing (http://www.cstl.nist.gov/biotech/strbase/). After completing his postdoctoral work, Dr. Butler went to a start-up company in California named GeneTrace Systems where he was a staff scientist and project leader developing the capabilities of time-of-flight mass spectrometry for STR and SNP genotyping assays. In 1999, Dr. Butler returned to NIST where he is currently a project leader developing new methods and technologies to aid forensic DNA typing through funding from the National Institute of Justice.

Dr. Butler has published more than 40 book chapters and peer-reviewed papers and made numerous presentations at national and international scientific conferences with a primary focus on improving technologies for DNA typing. He is a member of the American Society of Human Genetics and the International Society of Forensic Genetics. His recent textbook from Academic Press entitled "Forensic DNA Typing: Biology and Technology behind STR Typing" is gaining wide acceptance as a tool for training students and forensic scientists. Dr. Butler and his wife have four children (all of which have been proved to be theirs through DNA testing).