Basic Rules for
 Algebra

\&

Logarithmic Functions

Quadratic Formula:	Example:			
If $p(x)=a x^{2}+b x+c, a \neq 0$ and $0 \leq b^{2}-4 a c$,				
then the real zeroes of p are $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$,	If $p(x)=x^{2}+3 x-1=0$, with $\mathrm{a}=1, \mathrm{~b}=3$, and $\mathrm{c}=-1$, then $p(x)$			
$=0$ if $x=\frac{-3 \pm \sqrt{13}}{2}$,	Special Factors:	$x^{2}-9=(x-3)(x+3)$
:---	:---			
$x^{2}-a^{2}=(x-a)(x+a)$	$x^{3}-8=(x-2)\left(x^{2}+2 x+4\right)$			
$x^{3}-a^{3}=(x-a)\left(x^{2}+a x+a^{2}\right)$	$x^{3}+27=(x+3)\left(x^{2}-3 x+9\right)$			
$x^{3}+a^{3}=(x+a)\left(x^{2}-a x+a^{2}\right)$	Examples:			
Binomial Theorem	$(x+3)^{2}=x^{2}+2(x)(3)+3^{2}=x^{2}+6 x+9$			
$(x+a)^{2}=x^{2}+2 a x+a^{2}$	$(x-5)^{2}=x^{2}-2(x)(5)+5^{2}=x^{2}-10 x+25$			
$(x-a)^{2}=x^{2}-2 a x+a^{2}$	$(x+2)^{3}=x^{3}+3(x)^{2}(2)+3(x)(2)^{2}+2^{3}=x^{3}+6 x^{2}+12 x+8$			
$(x+a)^{3}=x^{3}+3 a x^{2}+3 a^{2} x+a^{3}$	$(x-1)^{3}=x^{3}-3(x)^{2}(1)+3(x)(1)^{2}-1^{3}=x^{3}-3 x^{2}+3 x-1$			
$(x-a)^{3}=x^{3}-3 a x^{2}+3 a^{2} x-a^{3}$	Example:			
Factoring by Grouping	$3 x^{3}-2 x^{2}-6 x+4=x^{2}(3 x-2)-2(3 x-2)=$ $\left(x^{2}-2\right)(3 x-2)$			
$a c x^{3}+a d x^{2}+b c x+b d=a x^{2}(c x+d)+b(c x+d)=$ $\left(a x^{2}+b\right)(c x+d)$				

Arithmetic Operations:

$a b+a c=a(b+c)$	$\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}$	$\frac{a+b}{c}=\frac{a}{c}+\frac{b}{c}$	$\frac{\left(\frac{a}{b}\right)}{\left(\frac{c}{d}\right)}=\frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \times \frac{d}{c}=\frac{a d}{b c}$
$a\left(\frac{b}{c}\right)=\frac{a}{1} \times \frac{b}{c}=\frac{a b}{c}$	$\frac{a-b}{c-d}=\left(\frac{-1}{-1}\right) \frac{a-b}{c-d}=\frac{b-a}{d-c}$	$\frac{a b+a c}{a}=\frac{a(b+c)}{a}=b+c$,	$\frac{\left(\frac{a}{b}\right)}{c}=\frac{a}{b} \div \frac{c}{1}=\frac{a}{b} \times \frac{1}{c}=\frac{a}{b c}$
$\frac{a}{\left(\frac{b}{c}\right)}=\frac{a}{1} \div \frac{b}{c}=\frac{a}{1} \times \frac{c}{b}=\frac{a c}{b}$			

Exponents and Radicals			
$a^{0}=1, a \neq 0$	$\frac{a^{x}}{a^{y}}=a^{x-y}$	$\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}$	$\sqrt[n]{a^{m}}=a^{m / n}=(\sqrt[n]{a})^{m}$
$a^{-x}=\frac{1}{a^{x}}$	$\left(a^{x}\right)^{y}=a^{x y}$	$\sqrt{a}=a^{1 / 2}$	$\sqrt[n]{a b}=\sqrt[n]{a} * \sqrt[n]{b}$
$a^{x} a^{y}=a^{x+y}$	$(a b)^{x}=a^{x} b^{x}$	$\sqrt[n]{a}=a^{1 / n}$	$\sqrt[n]{\left(\frac{a}{b}\right)}=\sqrt[n]{\sqrt[n]{b}}$

Algebraic Errors to Avoid:

$\frac{a}{x+b} \neq \frac{a}{x}+\frac{a}{b}$	To see this error, let a, b, and, x all equal to 1 . Then, $\frac{1}{2} \neq 2$.
$\sqrt{x^{2}+a^{2}} \neq x+a$	To see this error, let $x=3$ and $a=4$. Then, $5 \neq 7$.
$a-b(x-1) \neq a-b x-b$	Remember to distribute the negative signs. The equation should be $a-b(x-1)=a-b x+b$
$\frac{\left(\frac{x}{a}\right)}{b} \neq \frac{b x}{a}$	To divide fractions, invert and multiply. The equation should be $\frac{\frac{x}{a}}{b}=\frac{\frac{x}{a}}{\underline{b}}=\left(\frac{x}{a}\right)\left(\frac{1}{b}\right)=\frac{x}{a b}$ $\overline{1}$
$\sqrt{-x^{2}+a^{2}} \neq-\sqrt{x^{2}-a^{2}}$	We can't factor a negative sign outside of the square root.
$\frac{a+b x}{a} \neq 1+b x$	This is one of many examples of incorrect cancellation. By applying the properties above, the equation should be $\frac{a+b x}{a}=\frac{a}{a}+\frac{b x}{a}=1+\frac{b x}{a}$.
$\left(x^{2}\right)^{3} \neq x^{5}$	In this case we multiply the exponents, then the correct equation is $\left(x^{2}\right)^{3}=x^{2} x^{2} x^{2}=x^{2+2+2}=x^{6}$

LOGARITHMIC RULES

Logarithmic function	$y=\log _{a} x$, defined by $x=a^{y}$
Common logarithm	$\log x=\log _{10} x$
Natural logarithm	$\ln x=\log _{e} x$
Log Properties	
	$\log _{a} a^{x}=x ; a^{\log _{a} x}=x$
	$\log _{a}(M N)=\log _{a} M+\log _{a} N$
	$\log _{a}(M / N)=\log _{a} M-\log _{a} N$
Change of base formulas	$\log _{a}(M)^{N}=N\left(\log _{a} M\right)$
	$\log _{b} x=\frac{\log x}{\log b}$
	$\log _{b} x=\frac{\ln x}{\ln b}$

Solving Quadratic Equations

Standard form of Quadratic Equation: $a x^{2}+b x+c=0$

1. Completing the Square Method: Example: $2 x^{2}-10 x+9=0$

Step 1: Make sure the coefficient of x^{2} is 1 , if it is not already 1 then divide both sides of the equation by a. For our example, we will divide by 2 on both sides, and we get:
$x^{2}-5 x+\frac{9}{2}=0$.
Step 2: Take the coefficient of x in the new equation in scratch, divide it by 2 and then square that term. So, it will look something like: $\left(\frac{b}{2 a}\right)^{2}$, we get: $\frac{25}{4}$.
Step 3: Now add $\left(\frac{b}{2 a}\right)^{2}$ to both sides of the equation, and move the constant term on left side to the right side, so we get: $x^{2}-5 x+\frac{25}{4}=\frac{25}{4}-\frac{9}{2}$.

Step 4: Now you will notice that the left side of the equation becomes a perfect square, in our case we get: $\left(x-\frac{5}{2}\right)^{2}=\frac{7}{4}$.
Step 5: Now we will just solve this equation for x, and here we get: $x=\frac{5 \pm \sqrt{7}}{2}$.

2. Factoring by grouping or Diamond Method

Find 2 numbers that have the Sum of b and the Product of a times c. After you get the two numbers, you will get the factors $(x+$ constant 1$) *(x+$ constant 2$)$

Example: $\mathrm{x}^{2}-5 \mathrm{x}+6=0$
So we need to find 2 constants that have the sum of -5 and product of 6

$$
\begin{aligned}
& x^{2}-5 x+6=0 \\
& (x+(-2))^{*}(x+(-3))=0 \\
& (x-2)(x-3)=0 \\
& x-2=0 \text { or } x-3=0 \\
& x=2 \text { or } x=3
\end{aligned}
$$

References - The following works were referred to during the creation of this handout: Valle Verde Tutorial Support Service Handout and Basic Rules for Algebra Handout by Tomee Lu(SCAA Tutor).

