Math 115

- 1. For each list of numbers below, find the "magic" number that each list is getting closer and closer to.
 - ¹/₂, -¹/₄, ¹/₈, -1/16, ...
 - 0.3, 0.33, 0.333, 0.3333, ...
 - 1, 1, 1, 1, ...
 - 1, 2, 3, 4, ...
 - 1, -1, 1, -1, 1, ...
- 2. Write down 2-3 observations you can make about the lists of numbers above and what "magic" number they get closer and closer to.
- 3. Look at the following tables and analyze what is happening as x increases or decreases through the tables. Explain what you think is happening.

x	f(x)	x	g(x)	x	h(x)	х	h(x)
5	3	1	0	2	10	-2	22
9	5	2	20	3	12	-3	60
15	6.1623	3	102	4	4	-4	124
21	7	4	312	5	-20	-5	220
41	9	5	740	6	-66	-6	354

Math 120/125

1. Find the end-behavior limits for each function below.

2. Find the limits when $x \to \infty$ and when $x \to -\infty$. If you get super stuck, feel free to use DESMOS to draw the graph.

$$f(x) = \frac{1}{x^{-1}}$$

$$f(x) = \frac{1}{2}x^{3} + 2$$

$$f(x) = x^{3} - 2x^{2} + 3x + 1$$

$$f(x) = 4 - x^{2}$$

$$f(x) = 3^{-x}$$

$$f(x) = 4^{x-2} + 3$$

$$f(x) = 3^{x+5} - 1$$

$$f(x) = -(2^{x} + 6)$$

$$f(x) = \log_{2} x - 3$$

Math 130

1. Using properties of limits, compute the limits below.

$\lim_{x \to 2} 4x^2 + 3$					
	THEOREM 1.2 Properties of Limits				
$\lim_{x \to 1} \frac{x^2 + x + 2}{x + 1}$	Let b and c be real numbers, let n be a positive integer, and let f and g be $func-$ tions with the following limits.				
x · 1	$\lim_{x \to c} f(x) = L \qquad \text{an}$	d $\lim_{x \to c} g(x) = K$			
$\lim_{x \to 1} \frac{2x^2 - x - 3}{x + 1}$	1. Scalar multiple:	$\lim_{x \to c} \left[b f(x) \right] = bL$			
$x \rightarrow -1$ $x+1$	2. Sum or difference:	$\lim_{x \to c} \left[f(x) \pm g(x) \right] = L \pm K$			
$x^{3}+1$	3. Product:	$\lim_{x \to c} \left[f(x)g(x) \right] = LK$			
$\lim_{x \to -1} \frac{x+1}{x+1}$	4. Quotient:	$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{K}, \text{provided } K \neq 0$			
2	5. Power:	$\lim_{x\to c} [f(x)]^n = L^n$			
$\lim_{x \to -3} \frac{x + x - 6}{x + 3}$	L				

2. Find the limits when $x \to \infty$ and when $x \to -\infty$. If you get super stuck, feel free to use DESMOS to draw the graph.

$$f(x) = \sqrt{x + 3}$$

$$f(x) = -3x(5x^{2} - 6x - 4)$$

$$f(x) = 4^{x-2} + 3$$

$$f(x) = 3^{x+5} - 1$$

$$f(x) = -(2^{x} + 6)$$

$$f(x) = \log_{2}(x - 7)$$

$$f(x) = \log_{2}(x - 3) + 5$$

3. Compute the limits below.

$$\lim_{x \to 0} \frac{\frac{\sin(x)}{x}}{x}$$
$$\lim_{x \to 0} x^2 (1 - \cos(\frac{1}{x}))$$
$$\lim_{x \to 0} x^2 \sin(\frac{1}{x})$$