CHEMISTRY
What can I do with this major?

AREAS

ANY CHEMISTRY DISCIPLINE
- Product Development
- Process Development
- Analysis
- Testing
- Biotechnology (using living organisms or cell processes to make useful products)
- Consulting
- Quality Assurance/Quality Control
- Management
- Environmental Analyses
- Forensics

EMPLOYERS

Government:
- U.S. Food and Drug Administration
- U.S. Environmental Protection Agency
- U.S. Department of Agriculture
- National Institutes of Health
- Public health departments

Industries:
- Chemical, pharmaceutical, biotechnology, food, feed, cosmetics, agricultural, environmental, petroleum, consumer products
- Private research labs and organizations
- Colleges and universities
- Consulting firms

STRATEGIES

- Develop strong verbal, written, teamwork and problem-solving skills.
- Choose courses with laboratory components to build experimental and instrumentation skills.
- Gain experience in area of interest through internships, research with professors and/or complete a senior research project.
- Consider taking a course in grant writing.
- Earn master's degree in chemistry for advanced positions, greater responsibility and higher pay.
- Obtain Ph.D. to direct research projects and lead research teams.
- Enroll in undergraduate research early in your college career. (Chem200+Chem400)

Only some of the areas of specialization follow. Most students specialize at the graduate level.

AGRICULTURAL CHEMISTRY

Agricultural Production: crops and livestock
- Agrichemicals Development: herbicides, pesticides, fungicides, fertilizers, etc.
- Agrichemicals Testing
- Environmental Testing
- Regulation

Environmenta Testing
- Agrichemicals Development: herbicides, pesticides, fungicides, fertilizers, etc.
- Agrichemicals Testing
- Environmental Testing
- Regulation

Government:
- U.S. Department of Agriculture
- U.S. Environmental Protection Agency
- U.S. Food and Drug Administration
- Food and feed industries
- Agricultural chemical companies
- Plant and animal breeders and growers

Agriculture chemistry addresses the chemical processes associated with the production, protection and usage of crops and livestock.
- Maintain awareness of current environmental issues including policy, conservation, and industry trends.
- Pursue coursework in biology, biochemistry, water chemistry, soil chemistry, geology, etc. to support understanding of environmental impact.
- Develop strong verbal and written communication skills for work with interdisciplinary teams.
- Seek related experience through co-ops, internships, or part-time jobs in specialized area of interest.
Analytical Chemistry

<table>
<thead>
<tr>
<th>Areas</th>
<th>Employers</th>
<th>Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualitative Analysis</td>
<td>U.S. Environmental Protection Agency</td>
<td>Analytical chemistry focuses on determining the composition and structure of matter and has applications to all areas of chemistry.</td>
</tr>
<tr>
<td>Quantitative Analysis</td>
<td>U.S. Food and Drug Administration</td>
<td>Seek extensive laboratory and research experience along with courses in quantitative, qualitative and instrumental analyses.</td>
</tr>
<tr>
<td>Instrumentation Design</td>
<td>National Labs</td>
<td>Pursue advanced instrumentation and computer skills along with knowledge of statistics.</td>
</tr>
<tr>
<td>Experimental Design</td>
<td>Industries: chemical, pharmaceutical, waste management, environmental,</td>
<td>Develop attention to detail and strong problem solving skills.</td>
</tr>
<tr>
<td>Separations (mass spectrometry, chromatography)</td>
<td>petroleum, consumer products, legal, medical</td>
<td>Take electives in your field of interest, as some employers seek candidates with expertise in particular areas of analysis such as environment or pharmaceuticals.</td>
</tr>
<tr>
<td>Spectroscopy</td>
<td>Private research labs and organizations</td>
<td>Obtain knowledge of fundamental business principles to assist in meeting the goals of industry.</td>
</tr>
<tr>
<td>Chemometrics/statistics</td>
<td>Chemical instrumentation companies</td>
<td></td>
</tr>
</tbody>
</table>

Biochemistry

<table>
<thead>
<tr>
<th>Areas</th>
<th>Employers</th>
<th>Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthcare</td>
<td>Centers for Disease Control and Prevention</td>
<td>Biochemistry references the study of chemical properties within living systems.</td>
</tr>
<tr>
<td>Pharmaceuticals</td>
<td>U.S. Environmental Protection Agency</td>
<td>Consider taking courses to specialize in biology, molecular biology, genetics, biophysics or biophysical methods, as this field is often linked to other disciplines.</td>
</tr>
<tr>
<td>Environment</td>
<td>U.S. Food and Drug Administration</td>
<td>Develop excellent laboratory and computer skills.</td>
</tr>
<tr>
<td>Agriculture</td>
<td>U.S. Department of Agriculture Food Safety and Inspection Service</td>
<td>Strong oral and written communications skills are necessary for working with teams of scientists.</td>
</tr>
<tr>
<td>Food Science</td>
<td>Industries: chemical, pharmaceutical, waste management, environmental,</td>
<td>Seek undergraduate research opportunities with professors and plan to complete internships related to your area of interest.</td>
</tr>
<tr>
<td>Cosmetics</td>
<td>petroleum, consumer products, legal, medical</td>
<td>Join related professional organizations such as the American Society for Biochemistry and Molecular Biology.</td>
</tr>
<tr>
<td>Forensics</td>
<td>Private research laboratories and organizations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Public health departments</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hospital laboratories</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Commercial medical laboratories</td>
<td></td>
</tr>
</tbody>
</table>
AREAS

CHEMICAL ENGINEERING
- Bulk Chemicals (mass produced large quantities)
- Fine Chemicals (custom-produced small quantities)
- Consumer Products
- Biotechnology
- Pharmaceuticals
- Electronics
- Environmental Safety and Health
- Fuels and Energy Conversion
- Materials

GEOCHEMISTRY
- Analysis
- Testing
- Environmental Regulation
- Environmental Remediation

EMPLOYERS

Government:
- U.S. Department of Energy
- U.S. Environmental Protection Agency
- U.S. Nuclear Regulatory Commission
- U.S. Department of Agriculture
- U.S. Office of Surface Mining

Industries:
- Agrichemicals, industrial bulk and fine chemicals, food, biotechnology, pharmaceutical, cosmetics, environmental textiles, petroleum, consumer products, automotive, pulp and paper, rubber, electronics, plastics, energy
- Private research labs and organizations

STRATEGIES

Discipline combines chemistry and engineering to solve problems involving the use or production of chemicals.

- Consider double majors in chemistry and engineering.
- Develop exceptional communication and interpersonal skills for work on multidisciplinary teams. Attention to detail is crucial.
- Pursue experimental design, data interpretation and problem solving competence through coursework and research with professors.
- Seek internship or co-op experiences in the chemical engineering field.
- Join professional associations such as American Institute of Chemical Engineers to maintain current knowledge of opportunities in the field.
- Research Fundamentals of Engineering (FE) exam requirements, as this exam is typically the first step in becoming a Professional Engineer (PE).
- Consider a concentration in Sustainability to pursue field in Green (or Sustainable) Chemistry.

Geochemistry includes study of the liquids, gases and mineral deposits of rock to guide scientific and industrial applications.

- Build a strong background in analytical, physical and environmental chemistry. Pursue courses in hydrology, sedimentology, toxicology, plant ecology, oceanography for environmental work.
- Plan to take courses with laboratory components and seek geochemistry part-time jobs and internships.
- Maintain awareness of current environmental issues including policy, conservation, and industry trends for entry into environmental management or remediation.
- Geochemists working with the oil industry may work in areas where deposits are found. The industry is subject to fluctuation making some work contractual.
- Join the Geological Society of America and other environmental organizations.
<table>
<thead>
<tr>
<th>AREAS</th>
<th>EMPLOYERS</th>
<th>STRATEGIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>INORGANIC CHEMISTRY</td>
<td></td>
<td>Inorganic chemistry addresses the behavior of inorganic and organometallic compounds and how these materials can be modified for product applications.</td>
</tr>
<tr>
<td>Analysis</td>
<td>U.S. Department of Agriculture</td>
<td>Prepare a strong background in inorganic chemistry with classes in physics, materials science and chemical engineering.</td>
</tr>
<tr>
<td>Testing</td>
<td>U.S. Environmental Protection Agency</td>
<td>Develop excellent communication skills for work with other disciplines including materials scientists, physicists and engineers.</td>
</tr>
<tr>
<td>Synthesis</td>
<td>U.S. Geological Survey</td>
<td>Seek experimental design and analytical research experience.</td>
</tr>
<tr>
<td>Environmental Remediation</td>
<td>National Aeronautics and Space Administration</td>
<td>Inquire about grant writing training, as the inorganic chemistry job market is tight, and some scientists are required to solicit monetary support for their work through government, industry and private foundations.</td>
</tr>
<tr>
<td>Energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumer Products</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATERIALS SCIENCE</td>
<td></td>
<td>Materials science focuses on the development of new materials and the improvement of existing ones.</td>
</tr>
<tr>
<td>Metallurgy</td>
<td>U.S. Department of Energy</td>
<td>Earn an undergraduate degree in chemistry, engineering or physics for entry into the materials science field.</td>
</tr>
<tr>
<td>Ceramics</td>
<td>U.S. Department of Defense</td>
<td>Build laboratory and research experience as an undergraduate through coursework, projects with professors, co-ops or internships.</td>
</tr>
<tr>
<td>Plastics/Polymers</td>
<td>National Aeronautics Space Administration</td>
<td>Develop effective problem solving, communication and teamwork skills for collaborating with professionals in other fields.</td>
</tr>
<tr>
<td>Composites</td>
<td>National Labs</td>
<td>Seek undergraduate membership in professional organizations such as the American Society for Materials to learn more about opportunities in the field and to build professional contacts.</td>
</tr>
<tr>
<td>Semiconductors and Electronic Materials</td>
<td></td>
<td>Plan to pursue a graduate degree to specialize in a particular material, process or characterization technique.</td>
</tr>
<tr>
<td>Optical Materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomaterials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nanomaterials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extraction/Synthesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Government</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industries</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORGANIC CHEMISTRY</td>
<td>EMPLOYERS</td>
<td>STRATEGIES</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>Synthesis</td>
<td>Government:</td>
<td>Physical chemistry is the study of the structure, properties and reactions of natural and synthetic carbon-containing compounds to create uses for existing or new materials.</td>
</tr>
<tr>
<td>Healthcare</td>
<td>U.S. Department of Agriculture</td>
<td>Develop a strong background in chemistry, math and physics. Interest in study at the atomic level is central to physical chemistry.</td>
</tr>
<tr>
<td>Pharmaceuticals</td>
<td>U.S. Department of Energy</td>
<td>Enhance knowledge of quantum mechanics, thermodynamics, kinetics, structure, electronics and optics through additional classes.</td>
</tr>
<tr>
<td>Materials Science</td>
<td>U.S. Environmental Protection Agency</td>
<td>Seek coursework with laboratory components to build technical skills with both instruments and computers.</td>
</tr>
<tr>
<td>Consumer Products</td>
<td>Industries:</td>
<td>Pursue physical chemistry internships, co-ops and/or research projects to learn about practical applications of the field and increase job market-ability.</td>
</tr>
<tr>
<td>Biotechnology</td>
<td>Chemical, pharmaceutical, biotechnology, food, feed, cosmetics, agriculture, environment, petroleum, consumer product, rubber, plastics, elastomers, detergents, paints/coatings, dyes</td>
<td></td>
</tr>
<tr>
<td>Agrichemicals</td>
<td>Private research labs and organizations</td>
<td></td>
</tr>
<tr>
<td>Food Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuels</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PHYSICAL CHEMISTRY</th>
<th>EMPLOYERS</th>
<th>STRATEGIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials Science</td>
<td>Government:</td>
<td>Physical chemistry is a broad, interdisciplinary field applying techniques and theories from physics to study chemical systems.</td>
</tr>
<tr>
<td>Chemical Biology</td>
<td>U.S. Department of Energy</td>
<td>Develop a strong background in chemistry, math and physics. Interest in study at the atomic level is central to physical chemistry.</td>
</tr>
<tr>
<td>Nanoscale Science</td>
<td>U.S. Department of Defense</td>
<td>Enhance knowledge of quantum mechanics, thermodynamics, kinetics, structure, electronics and optics through additional classes.</td>
</tr>
<tr>
<td>Molecular Modeling</td>
<td>National Aeronautics Space Administration</td>
<td>Seek coursework with laboratory components to build technical skills with both instruments and computers.</td>
</tr>
<tr>
<td>Quantum Computing</td>
<td>National Labs</td>
<td>Pursue physical chemistry internships, co-ops and/or research projects to learn about practical applications of the field and increase job market-ability.</td>
</tr>
<tr>
<td>Biosensors</td>
<td>Industries:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pharmaceutical, electronics, ceramics, plastics, surfactants and colloids, environmental, consumer products</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Private research labs and organizations</td>
<td></td>
</tr>
</tbody>
</table>
AREAS

POLYMER CHEMISTRY
- Synthetic Macromolecules
- Biological Macromolecules
- Analysis
- Testing
- Synthesis
- Blending
- Compounding
- Consumer Products

EDUCATION
- Teaching
- Educational Research

EMPLOYERS

Government:
- U.S. Department of Defense
- National Aeronautics Space Administration
- National Labs

Industries:
- Adhesives, paints/coatings, synthetic rubber, synthetic fibers, agricultural chemicals, packaging, automobile, aerospace equipment, biomedical

STRATEGIES

Polymer chemistry is an interdisciplinary field in which molecular structures are modified by chemical processes to develop a material’s functionality.

Plan to take courses in polymers to specialize but be aware that most polymer chemists begin as organic chemists. The market for environmentally-friendly products will likely influence this field in upcoming years.

Develop effective communication skills for work on teams with scientists and industry professionals.

Seek exposure to business fundamentals, as polymer chemistry deals closely with end-products.

Gain research experience through internships, part-time employment and summer jobs.

Develop excellent communication skills, verbal and written.

Gain experience working with age group of interest through volunteering and tutoring.

Become skilled in the use of computers and laboratory equipment.

Certification is required for K-12 school teachers and varies by state.

Master’s degrees may be sufficient for teaching at community or two-year institutions.

Pursue Ph.D. for teaching opportunities at colleges and universities.

Gain teaching experience as a Teaching Assistant during junior and senior years.
<table>
<thead>
<tr>
<th>AREAS</th>
<th>EMPLOYERS</th>
<th>STRATEGIES</th>
</tr>
</thead>
</table>
| **HEALTHCARE** | Hospitals
Medicine
Dentistry
Optometry
Podiatry
Pharmacy
Veterinary Medicine
Allied Health:
 Occupational Therapy
 Physical Therapy
Medical Technology
Nuclear Medicine | Medical centers and clinics
Private and group practice
Health networks
Nursing homes
Rehabilitation centers
Colleges or universities
Correctional facilities
Large corporations
Armed services
Government agencies
State and local public health departments | Research various fields within healthcare to determine a particular career goal.
Plan to attend medical school or other related graduate program. Meet with a pre-health advisor periodically to evaluate progress toward goal.
Maintain an outstanding grade point average, particularly in the sciences.
Seek experiences in hospital or healthcare settings through volunteering, shadowing, part-time positions, or internships.
Join related student organizations. Demonstrate leadership abilities.
Secure strong faculty recommendations for graduate and professional school admissions.
Develop a back-up plan in case medical/graduate school admission is denied. |
| **OTHER PROFESSIONAL OPPORTUNITIES** | Medical/Pharmaceutical companies
Product development departments in industries:
 Chemical, pharmaceutical, biotechnology, food, feed, cosmetics, agricultural, environmental, petroleum, consumer products
Publishing firms:
 Books, scientific and research journals, technical press, large newspapers
Software firms
Regulatory agencies
Environmental management organizations
Waste management firms
Law firms
Legal departments of corporations
Private practice
Colleges and universities
Special libraries | Develop strong verbal and written communication, interpersonal and organizational skills.
Supplement chemistry degree with coursework or minor in chosen field (e.g., business, journalism, technical writing).
Seek sales experience through internships, part-time work or summer jobs.
Become familiar with desktop publishing and other software packages for scientific journalism and technical writing opportunities. Pursue experience writing for a school or local newspaper.
Join related student organizations (e.g., American Marketing Association, Financial Management Association, Public Relations Student Society of America, Society for Technical Communication, etc.)
Obtain an MBA or Ph.D. for advancement.
To pursue a J.D., participate in mock trial and pre-law associations, learn law school admissions process.
Earn master’s in library and information science, M.L.I.S., for college, university and specialized librarian positions, and join Special Libraries Association, Chemistry Division. |
GENERAL INFORMATION

- Undergraduate degree is sufficient for entry-level positions such as lab coordinator/manager, research assistant, product testing or analysis, technical sales or service representative.
- Maintain high grade point average and secure strong recommendations for graduate school admission.
- Undergraduate research experience at home institutions and/or NSF-REU summer programs at other universities is highly beneficial for future career steps.
- Master's degree is sufficient for most applied research positions, industrial work and some community college teaching.
- Ph.D. degree required for university teaching and advanced positions in management and research and development. Postdoctoral experience may be required for research positions in industry, universities and government.
- In the United States, doctoral students typically receive full tuition waivers and annual salaries to attend graduate school because there is a strong need for Teaching Assistants in General Chemistry classes. There is also federal and industrial monetary support available for research.
- Develop strong computer, mathematics and science skills/knowledge. Consider electives in computer science, math, physics, engineering, business, public speaking and writing.
- Seek coursework and opportunities to enhance laboratory skills.
- Obtain part-time, volunteer, co-op, internship and/or research opportunities with professors to gain relevant experience.
- Develop contacts at government laboratories, research organizations or in industry. Schedule informational interviews to learn about the profession and specific career paths.
- Read scientific journals to stay current on relevant issues in the field and join related professional organizations.